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NEAREST NEIGHBOR INVERSE REGRESSION

By TAILEN HSING

Texas A&M University and National University of Singapore

Sliced inverse regression (SIR), formally introduced by Li, is a very
general procedure for performing dimension reduction in nonparametric
regression. This paper considers a version of SIR in which the “slices” are
determined by nearest neighbors and the response variable takes value
possibly in a multidimensional space. It is shown, under general conditions,
that the “effective dimension reduction space” can be estimated with rate
n~Y2 where n is the sample size.

1. Introduction. In nonparametric regression, the presence of a large
number of potential predictors renders model fitting ineffective. This, known
as the curse of dimensionality, is caused in large part by the sparseness of
the data scattered in a relatively high-dimensional space. As a result, it is a
standard practice to consider reducing the dimension of the predictor variable
at some stage. The quality of this reduction step is crucial to the success of
the model fitting. To handle this important problem there are many proposals.
With no intention of being complete, we mention here Friedman and Stuetzle
(1981), Brieman, Friedman, Olshen and Stone (1984), Huber (1985), Hastie
and Tibshirani (1986), Hall (1989), Hirdle and Stoker (1989), Chen (1991),
Li (1991) and Samorov (1993). In this paper we focus on the procedure sliced
inverse regression, or SIR, formally introduced in Li (1991).

Throughout this paper let (X;,Y;), 1 <i < n, be iid random vectors where
X; € R% is the predictor variable and Y; € R% the response variable. Both
dy and dy, may be bigger than 1. For convenience (X,Y) will be a generic
variable having the same distribution as (X, Y;). We first briefly introduce
the essential elements of SIR for which the details can be found in Li (1991).
There are a number of basic assumptions in SIR.

(SIRa) The distribution of Y given X depends only on K linear combinations
of X, say B1X, ..., BxX.

(SIRb) For any b € R%, the conditional expectation E(b'X|B;X, ..., BxX) is
linear in B{X, ..., BxX.

Clearly, the B, in (a) and (b) are not identifiable. However, the linear space &
spanned by the B, is. The space & is called the effective dimension reduction
(e.d.r.) space. SIR achieves dimension reduction by identifying the e.d.r. space.
The assumption (b) is implied by but not equivalent to spherical symmetry
of the distribution of X. Hall and Li (1993) contains an interesting justifi-
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698 T. HSING

cation of the assumption. Assume also that var(X) is nonsingular to avoid
complication. It is easier to work with the standardized version of X and &.

Let
(1) X, =34(X; —p)
where p is the mean of X and 32 is any square root of var(X). Define
v(y) = EX|Y =y)

and

A =var(v(Y)) = E[»(Y)r(Y)'].
Also define the standardized e.d.r. space [cf. Li (1991)]

E=3"2&)= {3 v:ve &)
Under (a) and (b), it is shown as in Theorem 3.1 and Corollary 3.1 of Li (1991)

that
(2) v(y)v=0 forallve#' and all y,

where £ is the linear space orthogonal to £. That is, the standardized inverse
regression curve {v(y): all y} is contained in &. This implies that

Av=0 forallved

from which it follows readily (using symmetry) that
3) £(A) C &,

where €(A) denotes the column space (or range space) of the matrix A. We
will assume throughout that

(SIRc) & = €(A).

This is of course sometimes violated and modifications would be required to

make SIR work. See Li (1992) and Cook (1998).
In Li (1991), the e.d.r. space is estimated in the following manner in the

setting where Y is one-dimensional.
1. Divide the observed Y values into, say, r “slices” where slice i has n; obser-
vations. For example, the smallest n; of the Y form the first slice, the next

ng form the second slice and so on. o
2. Within the ith slice, compute the average, X(), of the corresponding X

values. Let

A= Z(ni/n)ﬁ;1/2(x(i) SRR X, YE Y,
i=1

where X, is the overall sample mean and 3, is the sample covariance
matrix.
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3. Estimate & with the basis comprising the eigenvectors that correspond
to the K largest eigenvalues of A. Finally, estimate & by performing the
transformation ﬁn 2,

The present work is motivated by the following two issues. First it is pointed
out in Li (1991) that the choice of slices is flexible. However, it is not clear how
to characterize what constitutes a configuration that will lead to a good es-
timate. Second, when Y is multidimensional, to generalize the way in which
the slices are defined from the one-dimensional setting is not entirely straight-
forward. See Cook (1995) and Li, Aragon and Thomas-Agnan (1994). In this
paper, we consider a simple variation of the above procedure that is free of
the problems mentioned.

Assume that Y has a continuous distribution to avoid ties. Unless otherwise
noted, throughout this paper for each i € {1,...,n}, let ix € {1,...,n} - {i}
be the index for which

d(Yi’Yi*) = min d(Yi, YJ),
1<j<n
J#i
where d(-,-) is some metric. That is, Y;, is the nearest neighbor of Y;. To

simplify notation we will assume that this metric d(-, -) is Euclidean, although,

in sofar as proofs go, d(-, -) only has to be a metric generated by some norm.
a—1/2
Let 32 be any nonsingular matrix such that 3*(2'/2y = var(X). Let £, !

be a root-n consistent estimate of 3 /% and

o a—l/2 .
i = En (Xz - n)
Define
(4) An = (Zn)_l Z (AiX;* + XI*X;)
i=1

Intuitions suggest that A, estimates A and hence the e.d.r. space can be esti-
mated following the steps in (3) above.

This paper focuses on the asymptotic properties of the above procedure. We
will show that A, — EA,, = Op(n~Y2) and that A, is asymptotically normally
distributed if the estimated mean and variance in A, are replaced by the
corresponding population versions. To address the rate of convergence of the
e.d.r. space estimate, it seems that one could just conclude from the above-
mentioned asymptotic results that the eigenvectors of A,, estimate those of A
at rate n~1/2. Unfortunately, while the differences between the eigenvectors of
A,, and the matching eigenvectors of EA, are Op(n~'/2), one cannot readily
conclude that the same holds for EA, and A for a general dimension d.
Indeed, for a sample of size n, the “typical distance” between an observation
and its nearest neighbor in the d-dimensional space is n~1/¢. Hence one could
expect the bias in our problem to be of rate O(n~1/%), implying that root-
n consistency could not be achieved if d, > 2. Fortunately, estimating the
eigenvectors of A is not the goal. Estimating the e.d.r. space is. To address the
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rate of convergence of an estimated space to a target space, it is only fitting to
consider a proper distance between the spaces. Li (1991) addresses this by an
R? statistic. Here we consider a distance which is somewhat different. We will
show that the procedure outlined above is root-n consistent in this sense. The
main results are formulated and stated in Section 2. The proofs are lengthy
and are presented in the remaining sections.

It is interesting to mention the connection between the problem considered
in this paper and certain problems in geometric probability. Recently there
has been some considerable interest on limit theories for random graphs con-
structed according to different optimization algorithms. See Aldous and Steele
(1992) and Avram and Bertsimas (1993) for some recent results and refer-
ences. The way of grouping in (4) corresponds to the nearest neighbor graph.
Other possibilities in that regard include the k2-nearest neighbor graph, mini-
mal spanning tree, sphere of influence graph, and so on. It is plausible to try
to adapt those algorithms to the slicing step in SIR. On the other hand, the
techniques developed in this paper to tackle the asymptotic theory of near-
est neighbor inverse regression may be beneficial for some of the unresolved
problems in the context of such random graphs.

2. Main results. Throughout, let
F()=P(X,Y)e-), F()=P(X,Y)¢"), G()=P(Ye-), G()=P(Y¢")

and, where applicable, let f be the joint density of (X,Y), g the marginal
density of Y and f(-|y) be the conditional density of X given Y = y. For con-
venience of notation we denote Z; = (X;, Y;) and Z = (X, Y). Unless otherwise
stated, vector and matrix norms will be Euclidean and denoted by |-|. Finally,
denote the sphere in R% which is centered at u with radius r by

S(w;r):={veR¥: |ju-v|<r}

As explained in Section 1, the standardized e.d.r. space & is estimated with
the basis composed of the eigenvectors that correspond to the largest K eigen-
values of A, where K is the dimension of &. Hence it would be convenient
to have a notation describing this operation. For a symmetric matrix A of di-
mension p x p, let A;(A) > --- > A,(A) be the ordered eigenvalues of A and
N1(A), ..., m,(A) be a corresponding set of unit eigenvectors. Let 1 < j < p.
Define

#;(A) = the linear space spanned by n;(A), ..., n;(A).

Note that if A;(A) > A;,;(A) then #;(A) doesn’t depend on the particular
choice of eigenvectors.

With this, our estimates for & and & are #x(A,,) and E;I/Z[%K(An)], re-
spectively. We wish to address the issue of the speed of convergence of these
estimates to & and &. In order to do so, we must first come up with a notion of
distance between linear spaces. The following notion is reasonable although
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not unique. Let ./ and ./ be two Euclidean spaces. Define

(5) A(A, )= sup |a—m (a)l+ sup [b—mw,(b),
ac./, |al=1 be A, [bl=1

where m_, and m _, denote the projections on ./; and ./, respectively. It is
stralghtforward to verlfy that A satisfies the triangle inequality. When this
notion of distance is applied to the problem on hand, it is related to that of
R? in Li (1991).

The first theorem states that our procedures give root-n rates of convergence
in A under very general conditions.

THEOREM 1. Assume that E[X|*** < co for some & > 0 and that

() lim ] up oY) - v(y)P]| =0

Then both A#(A,), €) and AS, " [#(A,)], &) are of rate O p(n-12).

The smoothness condition (6) is very weak indeed, which is satisfied for
most situations. The proof of Theorem 1 will be given in Section 3. The proof
is partially based on the idea that A, can be approximated by the following
quantity which is easier to analyze:

n
A, :=(2n)™! Z XX, +X.X),
where X; is defined in (1). The following result concerning the variance of A,
is therefore instrumental.

THEOREM 2. Suppose that E|X|**° < oo for some & > 0. Then for any con-
stants a;, by, ..., ag, bg in R%, there exists a bounded function vy such that for
any Borel sets A, Ax C R*™*% and any n,

n S

(7 n1 var(z Y aXX.bI(Z €A, Z, € A*)) < y(A, Ax),
i=1s=1

where vy has the continuity property that y(A,,, A,,*) — O for any sequence of

Borel sets {A,,, A,,*} for which F(A,)) A F(A,,x) — 0. In particular,

s
nvar( > a’sf\nbs) < y(RI&xHdy Rty < o0,
s=1

The proof of Theorem 2 will be given in Section 4. The strength of this
result is its generality. Note that the distributions are not even required to
have densities for the result to be valid.

Alternatively to Theorem 2, the following central limit theorem can also be
used to establish Theorem 1. While Theorem 1 does not give the precise asymp-
totic distribution of A(#%(A,,), &), this central limit theorem offers some in-
sight into how to go about that.
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THEOREM 3. Assume that g is continuous on (0 < g < 00) and for almost
every X, f(X,y) is continuous in y on (0 < g < o0). Also assume that EX[*** <
o for some & > 0. Then n'/2(A, — EA,) converges in distribution to some

random matrix W where for any S = 1,2... and constants a;, by, ..., ag, bg
in R%&, 5 | a/Wh, is distributed as Normal (0, 0%) with 0% = Y} k;0,; the

k; are finite constants depending only on dy while the w; are determined by f
and the a;, b, as

w1 = [ UA(%1, %) F (%1 [9)F (%) () dx, dx, dy,
2
os = [( [ 2 Faly) dxs) Fxalyay) dx dy,
2
os = [( [ i x)F Gl aly) dx s ) aw) .

2
o1 = ([ 4139 )i (3) iy iy )

where l/’(xla XZ) = (1/2) Zf:l a/s(xlx/2 + szll)bs'

Note that the precise expressions of the constants «; are delayed until Sec-
tion 4 in (35)—(38) since they contribute little insight at this point. The proof

of Theorem 3 is contained in Section 5.
We end this section with the remark that both Theorems 2 and 3 are easily
extended to cover the partial sums of a class of functions of (X;, Y;), (X;., Y;.).

3. The speed of convergence of the e.d.r. space estimate. We need
some lemmas first.

LEMMA 4. Let A, B be two symmetric matrices of dimension p X p, each
having k nonzero eigenvalues. Assume that |A — B| < § for some & where || - ||
denotes the sup norm. Let ./, (respectively, /) be the linear spaces spanned
by the eigenvectors of A (respectively, B) that correspond to A(A), ..., A;,(A)
[respectively, A{(B), ..., A (B)]. Then

A(Ax, AB) < E28{ A (A)[ 71+ [A,(B)[ ).
PrOOF. Letwuy,...,u,andvy,..., v, be two orthonormal bases of R” for
which uy, ..., u; are the eigenvectors that correspond to A;(A), ..., A,(A) for

A and vy, ..., v, the eigenvectors that correspond to A;(B), ..., A,(B) for B.
First focus on sup,c 4, |a=1 |2 — 7 4 (a)]. Write

Ulz[ula"'auk], U2=[uk+1,...,up]
and

V1=[V1,...,Vk], VQZ[Vk+1,...,Vp].
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Since
m 4 (a) =V Via,
we obtain
sup la—-m (a)l= sup |(I,-V,V)al
ac./y, |al=1 ac./y, |al=1
1/2
= ( sup a'(I, - VlV’l)a) ,
ac./y, lal=1

where I, is the identity matrix of dimension p. Using the fact that
ViVi+VyVy =1,
we get
1/2
sup |a—m 4 (a)= < sup a’V2V’Qa)
ac./y, |al=1 ac./y, |al=1

By the fact that every unit vector in ./, can be written as U;x for some unit
vector x € R*, we conclude that

/ ! ! 1/2
SUPac sy it 18— T4 (@) = ( sup XUIV,V,Uix)
(8) xeR¥ |x|=1
= (largest eigenvalue of U/1V2V’2U1)1/ 2,
Express A and B by the spectral decompositions
k k
A=> NA)uu, and B=) )(B)v;v..
i=1 i=1
Forl<i<kand k+ 1< j< p,itis clear that
Viw| = [Vi(A = B)u,|/[A;(A)] < 8/|A;(A)].
Hence
U1V, VU | < K287 /03 (A).

Consequently, for each nonzero eigenvalue v of U, V,V,U,; and a correspondin
’ 1v2Y¥2%1
unit eigenvector w,

lv| = [U;V,VoU w| < k352/)\%(A).
In view of (8), we have shown that

sup |a—m 4 (a)] < k¥28/|A,(A)].

acA, |al=1
By symmetry, we also have

sup [b—m_, (b)| < £¥?5/|1,(B)|. o
bes, [bl=1
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LEMMA 5. Under the assumptions of Theorem 1, EA, — A as n — oc.

PROOF. Assume for convenience that Y has a density g. It is clear that the
pdf of Y, is

g(v.) / (n - )G"2(S(y: Iy - v.))) dG(y),
which is bounded by
(. / (n — 1) exp(—(n — 2)G(S(y: |y - ¥.0))) dG(¥).
By Theorem A.1 of Bickel and Breiman (1983),

©) P(G(S(Y;|Y —y|)) < u) < bu

for any y € R% and u € [0, 1] where b is a constant depending only on dy.
Hence for any y,,

|, xp(—(n = DG(S(3: Iy .10 dG()
= f::o P(exp(—(n — 2)G(S(Y; |Y — y.]))) > u) du
= /::o P(G(S(Y;|Y —y.])) < —(log u)/(n — 2)) du

1
<b/(n—2) L=O(— logu)du = b/(n — 2).

As a result, the pdf of Y, is bounded by a constant multiple C of that of Y.
Hence
(10) E[[v(Y,)[*] < CE[[v(Y)[*] < oc.

Note that we assumed the existence of a density for convenience and that this
argument will go through in general if we replace g(y) by G(dy). Now

EA, — A = (E(Y)v(Y.)]— E[»(Y)»(Y)])/2
+ (E[v(Y)v(Y)] - Ep(Y)v(Y)])/2.
It suffices to deal with the first term. By the Cauchy—Schwarz inequality,
|Ev(Y)v(Y.)]— Ev(Y)»(Y)]| < EV2[p(Y)P1E[jv(Y,) — »(Y)]*].
Now write
E[v(Y,) —v(Y)I*] = A,(8) + B,(5),
where 6 > 0,
A,(5) = E[v(Y.) —v(Y)PI([Y, - Y| > )]
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and
B,(8) = E[|v(Y.,) — v(Y)]’I(]Y, - Y| < 8)].

It is easy to show that A,(8) — O for each fixed 6 by (10) and the Cauchy—
Schwarz inequality and that

lim sup B,(8) =0
by (6). This completes the proof. O
PROOF OF THEOREM 1. We focus on A(#%(A,,), &), the other one being sim-
ilar. By the triangle inequality,
A(Hx(Ay), €) < MH(A,), #x(A) + A Hk (A,), €).
Our task is therefore to show that both terms on the right are Op(n~1/2). By

_ n—1/2
the root-n rate of convergence of X,, and %, / , we conclude that
(11) A, — A, =0p(nY?).

Clearly, A, and A, both converge in probability to A and hence the conver-
gence of the eigenvalues follows. As a result, for any ¢ € (0, Ax(A)), we have

(12) P(Ag(A,) > &> Agi1(A,) — 1

and the same can be said for A,,. It follows simply [cf. Lemma 3.1 of Bai, Miao
and Radhakrishna (1991)] from (11) and (12) that

K K
A ADMADN(AL) = Y LA )M (A ) (A,) = Op(n™?),
i=1 i=1

where m; was defined in the beginning of Section 2. Hence (12) and Lemma 4
imply that

A(Hx(A,), #x(A,)) = Op(n'/?).
It follows from (2) that
E(A,)v=0 forallve&t,
Conclude as in (3) using symmetry that
(13) ¢(E(A,)) C &.

The question is whether the left-hand side of (13) can be a strict subset of &.
In view of (SIRc), this can happen only if

(14) EA,)v=0
for some eigenvector v corresponding to a nonzero eigenvalue of A. Note that

E(A,)v=Av+R,v,
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where R, — 0 by Lemma 5. Hence the scenario in (14) cannot happen for
large n. Consequently, we conclude that for all large n,

and as a result,
A(Hg(A,), &) = MHg(A,), #x(E(A,))).

That the last quantity is O p(n~1/2) now follows straightforwardly from Theo-
rem 2. This concludes the proof. O

4. Derivation of variance. This section contains the proof of Theorem 2.
Throughout we will assume without loss of generality that the X; are already
standardized to have mean 0 and variance equal to the identity matrix. Below
let v denote a generic function with the continuity property described in the
theorem but which may take various forms in different inequalities. In the end,
the maximum of these y functions will be the one in (7). Also for convenience

of notation, write
s
(21, 2y) = 0(2q, Zg; A, Ax) :=)_ax;x,b, I(z, € A, 2y € Ax)
s=1
for z; = (X1, ¥1), 2y = (X9, ¥5) € R%*% and Borel sets A, A of R%"% . Thus,

n S n
Z Z a.,sXLX;*bsI((XH Yt) € Aa (Xi*’ Yl*) € A*) = Z w(zi? ZL*)

i=1s=1 i=1
By symmetry,
n 2 n n
B( Y 0@.2:)) =X 3 Blo(,. 2.)0(2,. ;)]
i=1 i=1j=1
= nE[0*(Z,Z,,)] + n(n — 1) E[o(Zy, Z1,)0(Zy, Zy,)]
and so

Var( Y o(Z;, Zi*)) = MP(n)+ MP(n) + MP () + MP(n) + M (n)
i=1

+ (Mg?)(n) - EZ( Z o(Z;, Zi*))),

i=1

where
MP(n) = n(n — 1)E[w*(Zy, Zy)I(1x = 2)],
MY (n) = n(n — 1)E[w*(Zy, Zy)I(1x = 2, 2 = 1)],
M (n) = n(n = 1)(n — 2)E[0(Z;, Zs)o(Zy, Z3)[(1x = 3, 2+ = 3)],
MP(n) = n(n — 1)(n — 2)E[w(Zy, Zo)w(Zs, Zs) (1% = 2, 2 = 3)],
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MO (n) = n(n — 1)(n — 2)E[0(Z1, Z3)0(Zo, Z;)I (1% = 3, 2% = 1)],
MY (n) = n(n — 1)(n — 2)(n — 3)E[0(Zy, Zo)o(Zs, Z,)I(1% = 2, 3% = 4)].
It follows from Cauchy—Schwarz and the triangle inequalities that
5 S
(15) gla’sxlxé b, < sgl |ag||by| [y |[%2] < C(|x4[* + [%o|*)

for some constant C < co. Below C will denote a generic constant whose value
changes from line to line. By (15), the arguments that led to (10) and Hélder’s
inequality,
MP(n) < CnE[(Xy[* + X, [H)I(Z, € A, Zy, € Ax))]
< CnEY® (X, |*+o1P*/4+e)(Z, € A, Z,, € Ax).

Consequently,

(16) nIMP(n) < y(A, Ax).
and, since M(22)(n) < M(12)(n),

(17) n MY (n) < y(A, Ax).
Now consider M ;3)(n). Again, by (15),

MP(n) < Cn(n —1)(n - 2)
% E[([X; ] + X5 ) (X[ + [Xs/?)
xI(1x=3, 2x=3, Z;,Zy € A, Zz € Ax)]
(18) =Cn(n—1)(n-2)
x (E[[X;2Xo2I(1x =3, 2+« =3, Z;,Z; € A, Zz € Ax)]
+2E[X,[2Xs2I(15 = 3, 2% =3, Z1,Zo € A, Zs € Ax)]
+ E[[X*I(1x =3, 2+ =3, Z1,Zy € A, Zy € A¥))).

First consider the leading term on the right of (18). By the Cauchy—Schwarz
inequality and symmetry,

E[|X; 21X, T(1% =3, 2x =38, Z1,Zy € A, Z3 € Ax)]
<E[X;[*I(1x =3, 2x =3, Z; € A, Z3 € Ax)]
< EYU[X |*°I(1x = 3, 2% =3, Z; € A)]
x P4+ (1% =3, 2% =38, Zs € Ax).

(19)
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The two terms in the product on the right-hand side are bounded slightly
differently, depending on the order in which the variables are to be averaged.
By the inequalities

(200 l-x<e™ x>0 and P(AUB)=>(1/2)(P(A)+ P(B)),
E[X,[**I(1x =3, 2x =3, Z; € A)]
= A/ | 1 l** G (S(y13 [y1 — ¥al) U S(v23 [v2 — ¥al)
zZ€ Y3 “¥2
x dG(y;)dG(ys) dF(z,)
<[ [ ]l exp(-nG(S(yslys - ys U Swaile - vsl)
zZ e Y3 Y¥2

x dG(y;)dG(ys) dF(zy)

IA

Lo L it exn(-/2)G(S G151y = v3))
x exp(—(n/2)G(S(yy; lyz — y31))) dG(y2) dG(y3) A F (2y).
By (9) and the derivations that immediately follow,

| exp(=(r/2)G(S(y3; Iy2 — ¥31)) dG(¥2) < (2b/n).

ya

Consequently,
E[X|[*I(1x=3, 2x=3,Z, € A)]

<@/m) [ [ xl* exp(~(0/2)G(S1: lys ~ yal)) dG(ya) dF ().

Clearly,
/y exp(—(1/2)G(S (13 [y1 — ¥31)) AG ()
— / : exp(—(n/2)G(S(y1; 7)) d,G(S(yy; )
- /1:0 exp(—(n/2)u)du = 2/n.
Thus,

(21) E[X;|*"I(1x =3, 2x =3, Z; € A)] < (4b/n®)E[|X,|***I(Z, € A)].
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By (9) and (20),
P(1x =3, 2x =3, Z3 € Ax)
= LaeA* /y fyz exp(—(n/2)G(S(y1;|y1 — ¥31))
(22) x exp(—(n/2)G(S(y2; 1y2 — ¥31))) dG(y2) dG(y,) dF(z3)
= (/y exp(—(n/2)G(S(y; |y — ¥3)))) ch(y))2 dF(zs)

Zze Ax

< (2b/n)?F(Ax).

The first term on the right of (18) is taken care of by (19), (21) and (22). It is
clear that the other two terms on the right of (18) can be dealt with similarly,

giving
(23) nIMP(n) < y(A, Ax).

Next we consider M 512)(11) and M gz)(n), which are the same, and we use the
notation of the former. By (15),

2
MP(n) < Cn(n — 1)(n — 2)E[(X,[? + X )(IXe[* + [X5[?)
xI(1x =2, 2x=38, Z, € A, Zy € AN Ax, Z3 € Ax)].
Repeated applications of the techniques used in the previous step give

(24) n T (MP () + MP(n)) < y(A, Ax).

Finally we consider the interplay between M 22)(n) and E%[Y", 0(Z;,Z,)),
which is the most crucial part of the computation of the variance. Define

E(y1,¥2) = Elo(Zy, Zy)|(Y1, Y2) = (Y1, ¥2) -
Then

MP(n) =n(n - 1)(n - 2)(n — 3)
x [ €(v1,92)¢(v5: ¥4)

x I(y1,¥2 & S(¥3;1¥3 — Ya)I(¥3, ¥4 & S(¥1;[y1 — ¥2)
x G"4(S(yy1;|y1 — ¥al) U S(ys; lys — y4l)
x dG(y1) dG(ys) dG(y3) dG(y4)
<n?(n—1)>
x [ £(v1, ¥2)6(33, ¥2)

x G 4(S(y1;|y1 — ¥a) U S(¥3; lys — ¥al)
x dG(y1) dG(ys) dG(y3) AG(Yy4).
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On the other hand,
E2(Z w(Z;, zi*))
i=1
= n¥(n = 1) [ &(y1, ¥2)6(93. ¥4)

x G 2(S(y1; |y1 — ¥2))G"*(S(ys: [¥3 — val))
x dG(y,) dG(y2) dG(y3) dG(y4).

Hence
Méz)(n) - Ez(Xn: o(Z;, Zi*))
i=1
<n®*(n-1)*
(25) X /5()’1’3’2)5()’3’)74)

x (G"H(S(y1; [y1 — ¥2)) US(ys: lys — al)
— G"2(S(y1; ly1 — ¥21)G"2(S(y1; Iy1 — ¥2l)))
x dG(y;) dG(y3) dG(y3) dG(yy)-

If G(S(y1; [y1 — ¥2))) + G(S(¥3; [ys — ¥4l)) <1 then clearly,

G"2(S(y1; ly1 — y21)G"2(S(¥1; Iy — ¥2))
> (1- G(S(ysly1 — ¥al) — G(S(ys: ys — v4)))" .
while the integral in (25) has an exponential rate, say e"*y(A, Ax) for some

¢ > 0 and some 7y, when restricted to the set G(S(y1; [y1 —¥a|)) + G(S(y3; |ys —
¥4|)) = 1. Hence,

MP) - B S w(Z,, zm)
i=1
< e "y(A, Ax)+ n’(n — 1)?
X /f(yl,yz)f(yg,m)
x I(G(S(y1; lys —yaD) + G(S(ys; lys —yal)) < 1)
X (Gn-‘l(s()ﬁ; ly1 — ¥al) US(y3: |ys — ¥4l))
— (1= G(S(y1; ly1 — ¥al)) — G(S(y3: lys — yaD)" %)
x dG(y1) dG(y3) dG(y3) dG(ys4).

Since we also have

G *(S(y1;1y1 — ¥2)) U S(ys; [ys — yal)
> (1 - G(S(y1; y1 — ¥2)) — G(S(ya: lys — y4l)"
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upon applying the Cauchy—Schwarz inequality and symmetry,

MP0) - B( L o(2,2,))

i=1
= e_cn')’(A, A*) + n2(n - 1)2[An, 1+ (An,2 - Bn)]’

(26)

where
A, = f§2(Y1, vo)l(ys € S(yi;1y1 — ¥2l))

x G"(S(y1; ly1 — ¥2) U S(ys; lys — yal))
x dG(y,) dG(ys) dG(y3) dG(yy),

A, o= f'fz(}’b vo)I(ys € S(¥1;1y1 — Yal))

x G"4(S(y1; ly1 — ¥al) U S(y3; lys — ¥4l)
x dG(y,) dG(ys) dG(y3) dG(y,)

and

B, = [ £y, y2)I(G(S(ys: Iy1 — ¥2) + G(S(s: s = y4)) < 1)

x (1= G(S(y1; ly1 — ¥al) — G(S(ys; lys — y4))"
x dG(y,) dG(ys) dG(y3) dG(yy4)-
Using (9) and (20) as before, we obtain

A= E6Ly)Iys e Sy - o))
Yi1,¥2, ¥4
X exp(—n—;éG(S()ﬁ; ly: — Y2|))>
(1 exp(_%‘fG(S(yg; 1¥s - y4s>>) aG(yy))
x dG(y1) dG(ys) dG(ys4)

2b
p—} &4 (y1, ¥2)G(S(y1: ly1 — ¥2l)
—4Jy,y,

<exp( -5 G(S(rily1 ~ ) ) d6(3) A6

<

(27)

2b
n—4

=

/y L M Ay, ADGS 1 y1 ~ val)
1>Y2

< exp( -5 2GSy Iv1 ~val) ) dO(y) A2

2b
n —4 Y1, Y2

< exp( -5 2GS Iv1 - val)) dG(2) G2,

M2(¥1, A)n1(Ya, A%)G(S(y1;y1 — val))

711
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where
n(y, B)= E[[X[*I(Ze B)[Y=y],  m(y,B)=P(ZeB|Y =Yy).
For any ¢ > 0, by the Cauchy—Schwarz inequality

[, m Anaye AOGSE1: Iy - ya))
<exp( =G5 lv1 - ¥al) ) 4G AG )
([ nl e Gy vl
_ 1/(1+¢)
<o~ 2GS0ty - v2D) ) dG GG )
< (e ARG - 2D)
_ o/ (1+2)
e U A E ALY B

Clearly,

/y @ AGE v~ vaD)

. exp(—fl—‘-wa(yl; ¥e Yzl))) dG(y,) dG(y)

= [ b d)| [ wess(-

= O(H_Z)E[ni+€(Ys A)]

_ 4u) du] dG(y,)

Similarly, for any p,q >0, p+q=1,

[, mE Y e A0G(S(yilys — ¥al)
< oxp( 25 2GSy ~ ) ) A3 AG()
< ([, " s an
N Y1, Y2 2 >
_ 1/p
<o~ 2GS wily -3l Gy dG) )
<[, G Sy x)
Y1, Y2
_ 1/q
<exp(~ 2GS ly - :l) ) 463 4G ) )

= O(n 2)EVP[nE (Y, Ax)).
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This together with the previous estimate give a bound of the first term in (27).
The second term there is bounded by the same principle. Hence we obtain

(28) n®A, 1 < v(A, Ax).

Next, straightforward computations show that

1 _
(29) B,= E(y1, ¥2)G" 1 (S(y1: ly1 — ¥21) dG(¥1) dG(y2).

n—1Jy,y,

Next note that

A, o= /yl,yz,ya £(¥1,¥2)
< () s # Sty -2
Y4

< Sy 1~ 3l) U Sy~ ¥aD) 6w )
x dG(y1) dG(y;) dG(¥s)
0 = fmm E4(y1, yz)</:0 G"(S(y1; ly1 — ¥2) U S(y3; 7))
< d,G(S(y3 191~ ¥al) U S(35i7)

x dG(y1) dG(yz) dG(ys3)

. GSGulyi-y) -,
=[ v/ u" du
Y1,¥2,¥3 u=0

x dG(y;)dG(y2) dG(ys)

1

=3 E(y1, ¥2)G"(S(y1; ly1 — ¥21)) dG(y1) dG(y2).
Y1, Y2

Now by (29), (30) and the techniques leading to (28),
31 n’(A, 2 — B,) < ¥(A, Ax).

By (26), (28) and (31), we obtain

n

(32) n-l(Mﬁf)(n) - Ez(z o(Z;, zi*)>) < y(A, Ax).

i=1

Hence (7) follows from (16), (17), (23), (24) and (32). This concludes the proof
of Theorem 2. O
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5. Central limit theorem. The rest of this paper is devoted to prov-
ing Theorem 3. This section gives the outline of the proof and the remaining
sections contain the various technical details. The complete proof is rather
lengthy and is best broken into a number of components as is done below. To
facilitate the proof'it is crucial to have a set of clear and flexible notation. First
it is obvious that we can assume without loss of generality that X is already
standardized. Thus, Z;, = (X;,Y;), Z = (X,Y) and F and G are the probability
measures corresponding to Z and Y, respectively. Let z; = (x;,y;), 1 <i < m,
be vectors where x; and y; are of dimensions d, and dy, respectively, and the
distances |y, —y;|, 1 <i # j < m, are all distinct. From now on, fix a set
of constants a;,bq,...,ag, bg in R%. For measurable sets A, Ax C R%tdy

define
m S

H(A, Ax;{z;,1 <i<m})= % >3 al(xx), +x,x))bI(z; € A, z;, € Ax),
i=1s=1

where ix* is the index for which y,, is the nearest neighbor of y,;, that is, for
which

ly; = ¥i| = min ly; —le-
<j<m

1<
J#i
Also define
S, =4Z;,1 <i <n}

so that we can write

S

Y alA,b, = %%’(Rdﬁdu R&Hdy; 7).

s=1
As the notation will become rather complicated, let us make a minor simplifi-
cation by assuming that the density f of Z is bounded. It will be clear that if
this is not the case, we can do a truncation by attaching an indicator to every
relevant expectation and then the proof will go through in more or less the
same way as for the case where f is bounded. Since

1=G({y: g(y) > 0}) =limG({y: & < g(y) < ™'}),

it follows that for each & > 0 there exists some ¢ € (0, 1) such that

G{y: e < g(y) <& '}) < §/4.

Since {y: ¢ < g(y) < &7 '} is open, it can be written as a countable union of
bounded open rectangles, sets of the form (ey, f1) x -~ x (eg, f. a,) for finite
e;, ;- Then for any § > 0 it can be selected from these a finite set of bounded
open rectangles whose union we denote by C such that

0<G(C)-G{y: e < g(y) <& '}) < §/4.
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As a consequence, for every 8 > 0 there exists a set C which is the union of a
finite number of bounded rectangles in R% such that

G(C) < 8/2 and 0 < inf g(y) < sup g(y) < .
yeC yeC

Now take a bounded Borel set B € R% so that P(X ¢ B) < 6/2 and write
A = B x C. Clearly,

(33) F(A):P(ZngxC)sP(X¢B)+P(Y¢C)<8.
Write

nl/zg a/A,b, = ;L—}/-Z[;g(A, A; 7))+ H (A%, A7)
+ (A, A% .7,) + #(A°, AS; Jn)].
By Theorem 2 and (33), the variance of
n‘l/z[Jz/(Ac, A7) + H (A, A% 7))+ 2 (AC, AC; /n)]

can be made as small as desired by choosing a small enough 8. Thus, the
central limit theorem follows if we show

(34) n2(x (A, A; #,) — Ex (A, A; #,)) — 4 Normal (0, o2),
where
4
o? = D k;w(A)
i=1

and where, with

S(y1,¥2; 71, r2) = S(¥y1;71) U S(¥2; 72), Vi, Y2 €R%, 1,15 >0,
IS = fydy, S CRb

and ¢ as defined in Theorem 3, the «; and w;(A) are given by

(85) k1 =1+ [ exp(~[S(0, & [el. le])])) de,

Kg = /I(|€13 — €93| > €13 V |€23])
x exp(—|[S(e13, €23;|€13], |€23])||) de13 dEng

+2_/I(|€12 — &93] > [€12] > [€93])

(36)

x exp(—||S(0, €19; [€12], [€23])]]) de12 degg,
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Kg = —/ / / I(|€13| > &g A1 — €94
€1y /€13 /€y

OT [€94] > |€15] A €15 — &3]
or [e19] < [£13] + |€24])
x exp(—||S(0; [e13])]| — 1S(0; |e24])||) d&12 dE13 dEg,

37
+/£12 /813 /824 I(|e1s] < |e12] A l€12 — €24,
|€94] < |€12] A |€15 — €13],
1] < [e13] + [e24])
x exp(—1S(0, €19; |€15], |€24])||) d&15 dE 13 A€y,
(38) Ky =—1
and

w1(A) = [ PA(x1, %) (R1[Y)F (%)

x I(x1,%, € B, y € C)g(y) dx, dx, dy,
wa(A) = [ (%1, %) (%1, X5) (X1, X5, %3 € B, y € C)

X f(x1]y)f (X2]y)f (x3]y)&(y) dx, dx, dx;3 dy,

os() = [( [ v x) 1,3, € By € €)
2
< POl Galy) dxy dxs) e(3)dy,
o) = ([ #oxr.5) (13, € B, y < ©)

2
X F(xly)f (X ly)(y) dxy dx, dy) .

Here the w;(A) are truncated versions of the w; in Theorem 3. Also note that
in the «;, the purpose for the particular subscripts for the dummy variables

€’s is to keep track of how the various «; arise in the proof.

The proof of (34) goes as follows. One of the novelties here is a coupling
argument which simplifies the proof. For each n > 1, let P, be a Poisson

random variable with mean n and independent of all the Z;. Define
@n == JPn == {Zl’ ey an}.
Thus, &, is a Poisson process with intensity measure n [ f(z)dz. Also let

7(m) = Ex (A, A; 7).
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Define
39) 07 = k101(A) + kgwy(A) + (k3 — 1wz (A),

02 = w3(A) and 02 = wy(A).
Note that

02=0'%+022—032.
Write
'}X/(Aa A, ']n) - E‘%/(A’ Aa*/n) + T(Pn) - T(n)
Jn vn

(40) Vr

K (A AZ) - K (A A L) = (1(Py) — 1(n))

Jn
Ex (A, A;2)— EX (A, A; 7,)
+ .
Jn

The first term on the right-hand side of (40) converges in distribution to Nor-
mal (0, 0'% + 0'22) by Proposition 6. The second term on the right converges to 0
in probability by Proposition 9 and the fact that P, —n = O ,(n'/?). The third
term on the right converges to 0 by a straightforward computation (cf. Lemma
8). Note that the l.h.s. of (40) is the sum of two independent random variables
by the definition of P,. Since Proposition 10 shows that [7(P,) — 7(n)]/~/1
converges in distribution to Normal (0, 02), the proof of (34) follows.

6. Blocking. The main purpose of this section is to prove a central limit
theorem for the first term on the right of (40). Therefore we continue to work
in that setting and use the notation defined there.

PROPOSITION 6. Suppose that A = B x C € R>*% where B is a bounded
Borel set in R% and C € R% is a finite union of bounded rectangles. Assume
that f and g satisfy the assumptions of Theorem 3 and also 0 < infy.c g(y) <
supy.c 8(y) < oo and sup,c 4 f(z) < co. Then

41) n VA x(A, A 2,) - Ex (A, A;P,)) —> 4 Normal (0, of + 03)

where o and o are given by (39).

PROOF. A blocking method is created for the purpose of proving (41) and
is described as follows. For each n, partition C into disjoint equal-sized cubes
Ci,...,C,. A cube is a rectangle of the form (e, e; +6) x --- x (eq,, eq, + 6)
for some 6 > 0 and ey, ..., eq, € R. Call these C; “blocks.” Such a partition is
possible if we choose the rectangles that form C in such a way that the ratio
of the lengths of any pair of sides is a rational number. This can clearly be
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Fic. 1. Two adjacent blocks for dy, = 2.

done without sacrificing generality. Within each C;, place a “big” cube C; in
the center and fill the remaining space with / layers of equal-sized “small”
cubes where d;/ 21 < d;,/ 2 + 1. Assume that the sizes of the big (small) cubes
in all the C; are the same. This way, every pair of big cubes C; and C ; are

buffered by at least 2/ layers of small cubes. Figure 1 illustrates two adjacent
blocks in dimension 2 with [ = 2. Denote by C; 4,...,C; , the small cubes
that touch C; (i.e., the first layer of small cubes outside of C,). The motivation
for this scheme of blocking is the following. Clearly, if y € C,, it follows from
the choice of [ that
inf(ly - y'|: ¥ ¢ C;) — min sup(ly —y'|: ¥’ € C; 1)
(42) ==
> (I — dy/?) x length of the side of a small cube > 0

Suppose that Y ; € C, and there is at least a Y,, in each of the C’i, > then (42)

shows that the nearest neighbor of Y; must be in C;. We will make use of this

shortly. First, control the sizes of the big and small cubes by choosing
(43) / dy ~nP and / dy ~n~? where 1/2 < B < p' < 1.
Cl Cl,l

It is then easily verified that the small cubes are asymptotically negligible
and in fact

(44) /C dy~nf, p=0(nP) and q= O(n®-F)Ndy=1/dyy,
1

Note that we suppressed n at various places to streamline notation and fur-
thermore write

M5 )=H(Bx-, A ).
Since the big and small cubes are all disjoint,

M(C; P) = /1( CJ éi;yn) + /( O(Ci - C)); 9,1).

i=1 i=1
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By (43), (44) and the fact that the X are finitely truncated, it is easy to check
that

p A~
n‘l/zy//( ;= C); 9,1) — 0 uniformly almost surely
i=1
and hence
P ) P .
n‘1/2</< U(,; - Ci);9n> - E.//( U, - Ci);.@n)) —> 0 a.s.
i=1 i=1

So (41) will follow if we prove

p P
(45) n71/? (#( Ucs; %) - E.//( Ci; ,@n» —>4 Normal (0, o2 + o2).
i=1

i=1
Let

Z,(E)={X,Y)e 2,:YeE} and N,(E)=#(Z,(E)), E CR%.
Define the following events:

q1

EW = N{N.(C, ) # 0},
k=1

EY ={IN,(C})/EN,(C)-1l=¢},  1=isp,
where ¢, tends to 0 slowly enough so that
(46) P[(Egl))c] telnq P[(Egz))c] tend to O exponentially as n — oo
uniformly in i

and hence

47 Y (PIEL)]+ PIEDY]) =o.
=1

This is possible by (43), (44) and the assumption infy - g(y) > 0.
Consider the characteristic function

b, (t) = Eexp(itn_l/z[y/< O C‘i; Qn) — E%( O éi; Wn>]>, teR.
i=1

i=1
Write
d)n(t) = ¢n, l(t) + d)n,Z(t)’
where
p A~ ~
¢, 1(t)= E[Iﬂf’zl(Eﬁl)ﬂEﬁ-Z)) exp(itn‘l/2 I}%( Uc: 37,1) - E%( Ucs Wn)} ],
i=1 i=1
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By (47), ¢, 2(t) — 0 and we only have to deal with ¢, ;(¢). Take any i =

1,..., p. If E™ holds, then by (42) and the explanation there, .#(C;; 2,) is
completely determined by the set &,(C;), namely those points in &, whose
y-coordinates are in C;. As a result,

#(Ci;2,) = #(C;;2,(C))) on E”
and as a consequence,

bn1(t) = E{Inip:l( O E®) €XP (itn V2[4 (C;; 2,(C))) — E#(C; gn)])}.

Now write
p p
¢,1(t) = E{In_p £® (exp [itn_l/2 V. l]) ( [11z0 exp(itn‘l/zUn,i))
= i=1 i-1
p
X exp [itn'l/2 > Wn,i] },
i=1
where

U,.=#(C;2,(C,)) - E[.#(C;; Z,(C)))IN,(C)],
V.= E[#(C; 2,(C))IN,(C)]— E[.#(C;; 2,(C))],
W, = E[#(Cy; 2,(C))] - EL.#(C;; 2,)].

By (46), Y7, W,.; — 0 exponentially fast and so we focus on the remaining
terms. Clearly the random quantities I ;o exp(itn=12U ni)» 1 <1< p,arecon-

ditionally independent given the N,(C;) and I\, o exp(itn V2P |V, ))is
measurable with respect to N,(C;), 1 <i < p. Consequently, we have

p p
(48) b 1(t) = E{Iﬂ,il 5 €XP [itn‘l/2 >V, ,} I1 yn,i(t)} +0o(1),

=1 i=1
where
‘yn, i(t) = E(IE(.I) exp(itn_l/ZUn, L)INn(Ct))

Similar to the derivation of (47), it can be shown that on the event N7_; E§2) ,
& o) .
lim )" P[(E;")°|N,(C;)] =0 uniformly.

Hence, to obtain the limit of [T7_, v, ;(¢), we can focus on

E(exp(itn™'?U, ;)|N,(C))),

i

i=1

which is the characteristic function of the sum of p independent random vari-
ables. On the event N, EEZ), these random variables have zero means and the
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sum of the variances converges to a constant o2 uniformly by Lemma 7. Since

we have restricted the X; to be in a bounded set B and n 2 xnx fo dy -0
by (44), it is easy to see that on the event N, E ), n Y20, ; tends to 0

uniformly in { and w. Then it follows from the elementary 1nequahty,

m
(’tX ) EX? for any bounded r.v. X

ti Z E

sup | X|
6

(itX)3 t3
3 |

that

lim ]_[ E(exp(itn2U, ;)|N,(C;)) = exp(—0o7t*/2) uniformly on ﬂ E(z)
i=1

It then follows from (48) and (46) that

p
b, 1(t) = exp(— ot /2)E{Iﬂi1 £ €XP [itn‘”z V.. ]} + o(1)

i=1

= exp(—o-ftz/2)E{ exp Iiitn‘l/2 i V.. L:l} +o(1).

i=1

The same approach as before works as V,, 4,...,V, , are independent (by
the independent increment property of the Poisson process) It follows from
Lemma 8 that the variance of Y7_; V', ; converges to oz. In view of (46), it is
an easy exercise to verify the Lindeberg condition for the V,, ; and hence (45)
follows from these steps. O

We continue to use the notation defined in Proposition 6. Write

f(2)Iy € C;]

fi(z) = G(C))

and letZ;, ; = (X; ;,Y; ;), j > 1, be iid random variables with distribution

i,J°
P(Z; €)= [ fi(z)dz.

ze-

Accordingly, define g;(y), G; and f;(x|y).

LEMMA 7. Under the conditions of Proposition 6,

p
n 'Y var(U,, i IN,(C)) > of
(49) i=1
as n — oo uniformly on the event ﬂ E(z)
i=1

where a2 is defined by (39).
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Proor. Firstfix1<i < pandm >4 andletY, ; be the nearest neighbor
of Y; ; for 1 < j < m. For convenience, in this proof and that of Lemma 8 we

will write
s
{(X1, %) = 3 > ay(X;Xp + XX )b I(X1, X5 € B).
s=1
Then, by symmetry,
var(U, ;|N,(C;) =m)
= E[#4*(C;;{Z; ;, 1< j<m})]— E*[A(C;;{Z; ;, 1< j<m})]

= Z Z E[{X; ;,X; 1)K 5 X ) LY, Y € Ci)l
J=1 k=1

— (mE[{(X; 1,X; 1) I(Y; 1 € éi)])z
50) =mE[*(X;, 1, X, 1.)I(Y; 1 € (oB)
+m(m —1)E[{(X; 1,X; 1.){(X; 2, X; 2.)I(Y; 1, Y; 2 € €l
~ (MEB[£(X;, 1. X, 1) (Y, 1 € C))))°
= M\ (m) + My(m) + My(m) + M) (m)
+ M (m) + M{5(m) = M (m),
where
ME?‘)I(m) = mE[fz(Xz‘,pxi,u)I(Yi,l € C))]
=m(m — 1)E[§2(Xi,1axi,2)l(1* =2, Y€ C)l,

MP)(m) = m(m — DE[X(X;, 1, X )I(1x =2, 24 =1, Y, 1, Y, 5 € )],
MEy(m) = m(m — 1)(m — 2)E[{(X; 1. X; 3){(X; 2. X, 5)
xI(1x=3, 2+=38, Y, 1,Y; 5 € C;)],
MZ)(m) = m(m — 1)(m = 2)E[£(X;, 1, X; 2)0(X;, 2. X 3)
xI(1x=2, 2x=38, Y, 1,Y; 5 € C))],
MY (m) = m(m —1)(m — 2)B[{(X;, 1, X;,3){(X; 5, X, 1)
xI(1x=38, 2x=1, Y, 1,Y, 5 € C;)],

My (m) = m(m — 1)(m — 2)(m — 3)E[£(X; 1, X;. 5){(Xs. 2. X 1)
X I(l* — 3, 2% = 4, Yi,l’Yi,Z € él)]
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and
MO (m) = (m(m — DE[LX; 1, X 2)I(1x =2, Y; 1 € C)])>
Clearly,

ME(m) = m(m = 1) [ 2x1, ) 1(v1 € C)f i(21)f (2)

x GT72(S(yy1; ly1 — ¥2l)) dz, dz,.
Changing variables from (v, ¥2) to (v1. €) where ¢ = (mg;(y1))"/%(ys — 1),
the above becomes

ME)(m) = (m —1) [ &(x1, %:)I(y1 € C)f i(x1ly1)

x fi(Xg,y1 + €/(mg;(y1))"%)
X G?—Z(S(Yﬁ |8|/(mgi(Y1))1/dy)) dx,dy, dx,de

—1 R
= Z(Ci) /I(Y1 e C,,y, +¢/(mg;(y)Y% e C;)

x {%(x1, %) f(X1]y1) f (%o, y1 + £/(mg;(y1))V%)
x G 2(S(yy; |el/(mgi(y1))%)) dx, dy, dxy de.
Since g is bounded away from 0 and co on C = | J; C;, we have
(51) sup  GP'(S(y; lel/(mgi(y))"%)) < exp(=d|e[*),

1<i<p,m>1,yeC
where
_ infyeC g(Y) -0
SupyeC g(y)
Now replace m by N,(C;) in Mg?')l(m) and s(121m ME,Z)I(N,L(CZ-)) over i =
1,..., p. Taking account of the event N/, E;”, it follows from (51) and
dominated convergence that

p
(52) Y. MP(N,(C)~ nwy(A) [ exp(=ll(S(0; e])])) de = nwy(4)
i=1

as n — oo uniformly on N7_; EEZ). Similarly, uniformly on N7_; Egz)’ we have,

as n — oo,

b
(53) 3 ME(N,(C) ~ nwy(A) [ exp(~[S(0, &slel, [e)]]) de,
i=1
2 @)
> MH(NL(C))
i=1
(54)

~ nay(A) [ I(lers — eanl > less| v [eaal)

x exp(—|S(e13, €a3; |€13 |€23])[|) dE€13 dEY3
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and
5 MEN,(C) = 3 MEN, ()
j i=1
~ nwz(A)/IUelz — €93] > |£19] > [€93])

x exp(—||S(0, £19; [e12], [€23])]|) d&19 dEgg.

(55)

Now let’s consider the most crucial term, M % Observe that

MP(m) = m(m —1)(m — 2)(m — 3)
X /{(xl,xz)g(xg,x4)l(y1, Yo € éi)fi(zl)fi(zz)fi(z3)fi(z4)
x I(lyy — ys| < |¥1— Yol Aly1 — Yals

V2 — ¥4l < |y2 —y1l A ly2 — ¥3l)
X G?A(S(Yﬁ ly1 — ¥3)) US(ya; lye — ¥4)) dz, dzy dz; dz,

2
= M 1(m) + M’ 5(m),
where
MP, [(m) = m(m — 1)(m — 2)(m — 3)
x [ £(x1,%0)¢ (%5, X)1(91, ¥ € C;)

X [I(Iyl —¥sl < |y1 —¥ol Ay — ¥als
Y2 — ¥4l < 1y2 = ¥1l A ly2 — ysls
[y1 — ¥e| > [y1 — ¥sl + y2 —Y4|) - 1]

x fi(2)f(2)f1(23)fi(24) (1 = Gi(S(¥1: y1 — ¥3])
— GUSWailya—val)) " dadzy dzy day

+m(m = 1)(m —2)(m - 3) [ £(x1, %2){ (x5, X)I(¥1,¥3 € C;)

xl(yl—y:s’ < yl—yz’A Y1 — Yal»
Yo — Y4l <|¥2 — V1IN Y2 —¥s
ly1 — Yol < |y1— ¥l + Y2 — ¥al) Fi(21)f i (22)f i (23)f (24)

x G4 (S(y1; ly1 — ¥3l) U S(ys; Iye — y4)) 2, dzy dzy dz,

b

and
M7} 5(m) = m(m —1)(m — 2)(m - 3)
x [ £k, %0)8(ks, X)I(1, Y2 € Ci)f i(20) i(22) (25) fi(24)

X (1 —G(S(yi;ly1 —ysl) — Gi(S(yas lyz — Y4l)))m_4

X dzl d22 dZ3 dZ4.
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As before, it is straightforward to show that

p
Y MP) (N,L(C)))

i=1

~ nw3(A)|: - fe fe fe I(|813| > |€19] A €19 — €94
12 13 24
or [€54] > |€19] A [€12 — €13] OF |€15] < [€13] + [€24])

(56) x exp(—|[S(0; [e13])]| — [1S(0; |e4|)||) de1p dErg deEgy

+f f / I(Jess] < le1a] A l€12 — £24],
€15 /€13 /€y

|€g4| < [€12] A |€192 — €13,

le1a] < |e13] + |€24])

 xp(~| S0, e sl eaaDI) e dess ey |
So it remains to show how M Ezéz(m) interacts with M El)(m). Write

M o(m) = m* [ (%1, %2)¢(%3, %) I(31, 2 € C;)
x exp[—mG;(S(y1; |y1 — ¥3) — mG(S(y2; ly2 — ya1))]
x fi(20)f {(20)f1(25)f (24) A2y dzy dzg dzy + R (m),
where
RP(m) = m(m — 1)(m - 2)(m - 3)
x [ 41, %5)£(%s, X)(y1, ¥2 € C))
x (1= Gy(S(y1: ly1 — ¥3) — Gi(S(ya: lyz — va)" ™"
x [i(2z1)fi(22)f i(23)f (24) dz1 A2y d25d 2,4
—m* [ (%1, %5)¢(%5, X)I(31, ¥ € ;)
x exp[—mG;(S(y1; |y1 — ¥31)) — mG(S(ya; |¥2 — ¥4)))]
x fi(2)f(29)f {(23)f 1 (24) d2zy A2y dz5 d 2.
Also write
MO (m) =m* [ §(x1, %:)5(x, X)I(y1,¥2 € C)
x exp[—mG;(S(y1; |y1 — ¥s1)) — mG;(S(¥2; ly2 — ¥41))]
x fi(20)fi(22)f i(25)F i(24) A2y dzy dzg dzy + R (m),
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where

ROm) = (mGn = 1) [ d1, 5101 € Cf ()22

2
« G2(S(y1:1ys — y1))) dzy dzz)

- m4f§(X1,X2)§(X3,X4)I(Y1’Y2 € éi)
x exp[—mG;(S(y1;y1 — ¥31) — mGi(S(ya; ly2 — val)]
x [i(z1)fi(29)f (23)[ i(Z4) A2, d2zy dz3 d 2.
Hence
M) (m) — MP(m) = RP(m) - B (m).
Treating this with a similar approach to before yields

(57 3 M) L(N(C))) S MO(NL(C) ~ —nas(A).

i=1 i=1
The proof of (49) follows from (52)-(57). O

LEMMA 8. Under the conditions of Proposition 6,

P
lim n~! Y var(V, ;) = o3,

n—o00 .
i=1

where o2 is defined by (39).

PROOF. For convenience, denote N,(C;) by N, ; and use the notation in
Proposition 6 and Lemma 7. Thus,

E[%(éi;'@n)uvn,i] =N, (N ;- 1)/((1‘1, x5)I(y; € éi)fi(zl)fi(zz)

x G (S (s lys — 1)) dzy dzs.
Let N be a Poisson random variable with mean A and let
B(s) = EsN = ™D, s> 0.
Then for any s > 0,
E(N?*(N —1)%sV-2) = 2E(N(N — 1)(N — 2)(N —3)sV™%)
+4sE(N(N —2)(N —2)sV=3) + 2E(N(N — 1)sV?)
= "¢ (s) + 456 (s) + 2¢P)(s)
= e)‘(s_l)(sz)\4 + 4513 4 222)

=: (s, A).
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Hence,
E(E*[.#(C;; 2,)|N,,])
= /g(xl,x2)§(x3’ x4)I(y1,y3 € éi)fi(zl)fi(z2)fi(ZB)fi(z4)

X E[N?L,i(Nn,i — DX(Gi(S(y1;ly2 — ¥11))Gi(S(ys; lys — Y4|)))N"‘i_2]

x dz,dzydz3dz,
= f((xl, X5){ (X5, X,)[(y1, Vs € C)Ffi(21)f i (22)f i (23)f i (24)
X ‘Y(Gi(s()h; lys — Y1|))Gi(S(Y3; lys — yal)), nG(C;)) dz, dz, dzg dz,.

Now,
‘Y(Gi(S(Y1; lys — Y1|))éi(S(Y3§ lys — ¥al)), nG(C;))
= (nG(C;))* exp(—nG(C;)[G;(S(y1;|y2 — ¥1]))
+ Gi(S(ys; lys — y4))])
. x (1-2G,(S(v1; vz = v11) — 2G:(S(¥331¥5 — va))
+nG(C)G(S(Y1: Iy — 1D)Gi(S(¥3:1ys — ¥a)))
+4(nG(C,))’ exp(—nG(C))[G(S(¥1; |y2 — ¥11)
+ Gi(S(y3;1ys — val))])
+ smaller order terms.
Similarly,
E(N(N —1)sV72) = AZe*7D .= §(s, A)
and hence

E*(E[4(C;; 2N, 1)
= [ £(x1, %:)5(x5, X)1(y1, V5 € C)f i(20)f (22) (25 i(24)
x B[N, (N, ; = DG (813 y2 = 1)
x B[Ny (N, = DG (S(y531ys — v4) | dzy dzs dzg daz,
= [ (%1, %2) 85, X)I(V1, ¥5 € C)f (1) f(20) F(25)f i(24)

S 5(Gi(S(Y1; ly2 —¥11)), nG(C;))
X S(Gi(S(YS; lys — ¥41)), nG(C;)) dz, dzy dz3 dz,,
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where
8(G(S(y1; ly2 — y11)), nG(C;))8(G(S(y3; |y3 — val)), nG(C)))
= (nG(Ci))4 exp(—nG(C))[G;(S(y1; ly2 —¥11) + Gi(S(ys; |ys — yal)D-

Note that this cancels the first term in (58). By an approach similar to that
in the proof of Lemma 7, it is now easy to show from (58) that

p
Var( i Vn,i) ;{E(E2 A(Ci; 2N, i]) = EXE[4(Ci; )N, i)

~ nog(A)] 4 [exp(-S(0. eI e
< [ S(0. [¢l) exp(~1S(0. [eD) d
2
+ (150, el exp(-115(0. e de

2
+a{ fexp(-1S0. el e ) |
= nws(A). O
7. Other technical details.
PROPOSITION 9. Under the conditions of Proposition 6, there exists some
finite constant M such that for all m, n,
var(# (A, A; 7, ) — # (A, A; 7)) < Mm.
PROOF. Fori=1,..., m+n, let ix be the index for which Y;, is the nearest

neighbor of Y; in .#, ,, and for 1 <i < n, let i be the index for which Y, is
the nearest nelghbor of Y; in .7,. Write

H(A,A;. 7, )~ H(A,A;7,) = E, + Es,

where, with ¢ defined in Theorem 3,

n+m
Ri= Y ¢X;, X )I(Z;,Z,;, € A),

i=n+1
n

Ry =) [v(X. X;)(Z;, 2, € A) — (X, Xio)[(Z;, Z; € A)].
i=1

The first of these can be handled in a way that is very similar to what is in
the proof of Theorem 2 or Lemma 7 to give

var(R;) < Mm.
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Now write
D; = (X, X )(Z;, Zi, € A) — (X, Xig) (2, 2 € A)
and hence by symmetry,
var(Ry) = nED? + n(n — 1)ED, D, — n®E*D;.
First,

nED? = nED?*I(1x # 1s) < MnP(1% # 1) = Mnn"_’ -
Next,
n(n —1)ED;Dy = n(n — 1)ED{ DyI(1x # le, 2% # 28)
=n(n — 1)(ED DyI[(1% # 1e, 2% # 20) N F]
+ ED; D, I[(1% # e, 2x # 20) N F°]),
where

F=(Qe#2, lo#2e, 20 #1, 1k # 2x).

Keep in mind that the D; are bounded. Hence, taking an event in F¢, say
(le = 2), the contribution of it to n(n — 1)ED D, is

n(n — 1)E|D,Dy|I(1x # le, 2x # 2e, le = 2)
< Mn(n—-1)P(1x # le, le =2)
= Mn(n - 1)mfI(|y1 = ¥ol > ly1— yn+1|)én_1(S(Y13 ly1—y20))

% G’m—«l(s(y1: |y1 _ yn+1l)) dG(yl) dG(Y2) dG(Yn+1)

m 1

=Mn(n—1)nn+m.

The contribution of other events in F°¢ to n(n — 1)ED;D, can be dealt
with using the same principle to give O(m). So it remains to consider
n(n —1)ED; D, I[(1x # le, 2% # 2e) N F¢] — n2E%D;. Clearly,

n(n —1)ED;DoI[(1% # le, 2% # 2¢) N F]
=n(n—-1)(n —2)(n —3)m(m — 1)ED, D,
xI(le=3, 20=4, lx=n+1, 2x=n+2),
whereas
n?E?D; = (n(n —1)mED{I(1x = n + 1, 1le = 2))?

As in the proof of Lemma 7, the two leading terms here cancel and the re-
mainders are of O(m). This concludes the proof. O
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PROPOSITION 10. Under the conditions of Proposition 6,
n~Y2(z(P,) — 7(n)) — 4 Normal (0, o%)
where o2 is defined by (39).

PROOF. The proof is based on an application of the “delta-method,” as fol-
lows. Clearly,

7(m) = m(m = 1) [ w(xy, %,)1(21,7; € A)
x G 2(S(y13|y1 — ¥2I) dF(21) dF(25).
Now define
p(x) = 7(nx).
Then

p'(x) = n(2nx = 1) [ (%1, %) (21, 2, € A)
x G 2(S(y13|y1 — ¥2)) dF (2,) dF (z5)
+ na(na — 1) [ P(x1, %) (21, 25 € A)G"(S(y1: y1 — ¥2)
x 10g(G"(S(y131y1 — ¥21))) dF(z1) dF (25)

By dominated convergence,
(1)~ n [z, %) [(x1, %, € B, y € O)f (x1|y)f (%o[y)F () dxy dxy dy.

By the “delta-method” based on the fact that (P, — n)/+/n —, Normal (0, 1),
we obtain

T(P,)—1(n) _ p(P,/n) - p(1)
Vn B vn

- p’(1)(—5’%'——1- +0p(1) —>4 Normal (0, w,(A)). O
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