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NEAREST NEIGHBOR INVERSE REGRESSION 

Texas A&M University and National University of Singapore 

Sliced inverse regression (SIR), formally introduced by Li, is a very 
general procedure for performing dimension reduction in nonparametric 
regression. This paper considers a version of SIR in which the "slices" are 
determined by nearest neighbors and the response variable takes value 
possibly in a multidimensional space. I t  is shown, under general conditions, 
that the "effective dimension reduction space" can be estimated with rate 
n '/%here n is the sample size. 

1. Introduction. In nonparametric regression, the presence of a large 
number of potential predictors renders model fitting ineffective. This, known 
as the curse of dimensionality, is caused in large part by the sparseness of 
the data scattered in a relatively high-dimensional space. As a result, it is a 
standard practice to consider reducing the dimension of the predictor variable 
at  some stage. The quality of this reduction step is crucial to the success of 
the model fitting. To handle this important problem there are many proposals. 
With no intention of being complete, we mention here Friedman and Stuetzle 
(1981), Brieman, Friedman, Olshen and Stone (1984), Huber (1985), Hastie 
and Tibshirani (1986), Hall (1989), Hardle and Stoker (1989), Chen (1991), 
Li (1991) and Samorov (1993). In this paper we focus on the procedure sliced 
inverse regression, or SIR, formally introduced in Li (1991). 

Throughout this paper let (Xi, Yi), 15 i 5 n ,  be iid random vectors where 
Xi E Itd. is the predictor variable and Yi t JRdy the response variable. Both 
d ,  and d y  may be bigger than 1. For convenience (X,Y) will be a generic 
variable having the same distribution as (XI, Y1). We first briefly introduce 
the essential elements of SIR for which the details can be found in Li (1991). 
There are a number of basic assumptions in SIR. 

(SIRa) The distribution of Y given X depends only on K linear combinations 
of X, say P ix , .  . . ,PkX. 

(SIRb) For any b E lRdx, the conditional expectation E(blXI~;X, . . . ,PkX) is 
linear in Pix,  . . . , PkX. 

spanned by the PI, is. The space 8 is called the effective dimension reduction 
(e.d.r.) space. SIR achieves dimension reduction by identifying the e.d.r. space. 
The assumption (b) is implied by but not equivalent to spherical symmetry 
of the distribution of X. Hall and Li (1993) contains an interesting justifi- 

Received August 1997; revised December 1998. 

AMS 1991subject classifications. Primary 62005; secondary 60F05. 

Key words and phrases. Central limit theorem, dimension reduction, nonparametric regres- 


sion, sliced inverse regression. 

697 

6'in (a) and (b) are not identifiable. However, the linear space PhClearly, the 
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cation of the assumption. Assume also that var(X) is nonsingular to avoid 
complication. It  is easier to work with the standardized version of X and 6. 
Let 

where p is the mean of X and z1I2is any square root of var(X). Define 

and 

Also define the standardized e.d.r. space Icf. Li (1991)l 

Under (a) and (b), it is shown as in Theorem 3.1 and Corollary 3.1of Li (1991) 
that 

(2) 	 v(y)'v = 0 for all v E gLand all y ,  

where k1is the linear space orthogonal to 8.That is, the standardized inverse 
regression curve {v(y): all y) is contained in &. This implies that 

A v  = 0 for all v E 6'-;-' , 

from which it follows readily (using symmetry) that 

where 6(A) denotes the column space (or range space) of the matrix A. We 
will assume throughout that 

This is of course sometimes violated and modifications would be required to 
make SIR work. See Li (1992) and Cook (1998). 

In Li (1991), the e.d.r. space is estimated in the following manner in the 
setting where Y is one-dimensional. 

1. Divide the observed Y values into, say, r "slices" where slice i has n, obser-
vations. For example, the smallest nl of the Y form the first slice, the next 
n, form the second slice and so on. 

2. Within the ith slice, compute the average, x(", 	 of the corresponding X 
values. Let 

where X, is the overall sample mean and 2, is the sample covariance 
matrix. 



699 NEAREST NEIGHBOR INVERSE REGRESSION 

3.  Estimate r / ;  with the basis comprising the eigenvectors that correspond 
to the K largest eigenvalues of A. Finally, estimate B by performing the - -112 
transformation 3, . 

The present work is motivated by the following two issues. First it is pointed 
out in Li (1991) that the choice of slices is flexible. However, it is not clear how 
to characterize what constitutes a configuration that will lead to a good es- 
timate. Second, when Y is multidimensional, to generalize the way in which 
the slices are defined from the one-dimensional setting is not entirely straight- 
forward. See Cook (1995) and Li, Aragon and Thomas-Agnan (1994). In this 
paper, we consider a simple variation of the above procedure that is free of 
the problems mentioned. 

Assume that Y has a continuous distribution to avoid ties. Unless otherwise 
noted, throughout this paper for each i E (1,.. . ,n), let i* E (1,.. . ,n) - (i) 
be the index for which 

d(Yi,Yi,) = min d(Yi, Y,i), 
I,Is~ 

~ # i  

where d(., .) is some metric. That is, Yi, is the nearest neighbor of Yi. To 
simplify notation we will assume that this metric d(., .) is Euclidean, although, 
in sofar as proofs go, d( . , .) only has to be a metric generated by some norm. - -112 
Let 2;lJ2 be any nonsingular matrix such that ~ ~ ' ~ ( 3 ~ ' ~ ) '  = var(X). Let 3, 
be a root-n consistent estimate of 2;-'12 and 

Define 

Intuitions suggest that A,, estimates A and hence the e.d.r. space can be esti- 
mated following the steps in (3) above. 

This paper focuses on the asymptotic properties of the above procedure. We 
will show that An -EA,, = Op(n-1/2) and that A, is asymptotically normally 
distributed if the estimated mean and variance in A, are replaced by the 
corresponding population versions. To address the rate of convergence of the 
e.d.r. space estimate, it seems that one could just conclude from the above- 
mentioned asymptotic results that the eigenvectors of A,, estimate those of A 
at rate n-lI2. Unfortunately, while the differences between the eigenvectors of 
An and the matching eigenvectors of EA,, are Op(n-'I2), one cannot readily 
conclude that the same holds for EA, and A for a general dimension d,. 
Indeed, for a sample of size n, the "typical distance" between an observation 
and its nearest neighbor in the d-dimensional space is nplld. Hence one could 
expect the bias in our problem to be of rate ~(n-l ldy) ,  implying that root- 
n consistency could not be achieved if d, > 2. Fortunately, estimating the 
eigenvectors of A is not the goal. Estimating the e.d.r. space is. To address the 
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rate of convergence of an estimated space to a target space, it is only fitting to 
consider a proper distance between the spaces. Li (1991) addresses this by an 
R2 statistic. Here we consider a distance which is somewhat different. We will 
show that the procedure outlined above is root-n consistent in this sense. The 
main results are formulated and stated in Section 2. The proofs are lengthy 
and are presented in the remaining sections. 

It is interesting to mention the connection between the problem considered 
in this paper and certain problems in geometric probability. Recently there 
has been some considerable interest on limit theories for random graphs con- 
structed according to different optimization algorithms. See Aldous and Steele 
(1992) and Avram and Bertsimas (1993) for some recent results and refer- 
ences. The way of grouping in (4) corresponds to the nearest neighbor graph. 
Other possibilities in that regard include the k-nearest neighbor graph, mini- 
mal spanning tree, sphere of influence graph, and so on. It is plausible to try 
to adapt those algorithms to the slicing step in SIR. On the other hand, the 
techniques developed in this paper to tackle the asymptotic theory of near- 
est neighbor inverse regression may be beneficial for some of the unresolved 
problems in the context of such random graphs. 

2. Main results. Throughout, let 

and, where applicable, let f' be the joint density of (x, Y), g the marginal 
density of Y and f (.I y) be the conditional density of x given Y = y. For con- 
venience of notation we denote Z, = (Xi,Y,) and Z = (x, y ) .  Unless otherwise 
stated, vector and matrix norms will be Euclidean and denoted by / . I .  Finally, 
denote the sphere in J R d y  which is centered at u with radius r by 

S(u; r) := {v E E t d y :  lu - vl 5 r}. 

As explained in Section 1, the standardized e.d.r. space 8 is estimated with 
the basis composed of the eigenvectors that correspond to the largest K eigen-
values of An where K is the dimension of 8.Hence it would be convenient 
to have a notation describing this operation. For a symmetric matrix A of di- 
mension p x p, let hl(A) 2 . . . 3 h,)(A)be the ordered eigenvalues of A and 
ql(A),. .. ,qp(A)be a corresponding set of unit eigenvectors. Let 15 j < p. 
Define 

d?'(A) = the linear space spanned by ql(A),. .. ,q j(A). 

Note that if hg(A) > A,j+l(A)then d%(A)doesn't depend on the particular 
choice of eigenvectors. 

A 

With this, our estimates for 8 and G are JGc(A,,)and Xn
-1/2 

[JGc(An)],re-
spectively. We wish to address the issue of the speed of convergence of these 
estimates to 8and G. In order to do so, we must first come up with a notion of 
distance between linear spaces. The following notion is reasonable although 
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not unique. Let .Yl and ,Y2 be two Euclidean spaces. Define 

where r n , ~ ~  denote the projections on .4 and .Y2, respectively. It is and r n . ~ ~  
straightforward to verify that A satisfies the triangle inequality. When this 
notion of distance is applied to the problem on hand, it is related to that of 
R2 in Li (1991). 

The first theorem states that our procedures give root-n rates of convergence 
in A under very general conditions. 

THEOREM1. Assume that EIX14'" < ca for some 6 > 0 and that 

lim E sup V(Y) v(y)2] = 0.-

8 - 0  [ lY-,<B 

- -112 
Then both A(yPK(A,), 8)and A(x,, [XK(h,,)],8) are of rate Op(n-'I2). 

The smoothness condition (6) is very weak indeed, which is satisfied for 
most situations. The proof of Theorem 1will be given in Section 3. The proof 
is partially based on the idea that A, can be approximated by the following 
quantity which is easier to analyze: 

A,, := (an)-' C (x,x,+xi&), 
i=l  

where X, is defined in (1).The following result concerning the variance of A, 
is therefore instrumental. 

THEOREM2. Suppose that EIX14'" < co for some c: > 0. Then for any con- 
stants al ,  b l ,  . . . , as, bs i n  IIRdx, there exists a bounded function y such that for 
any Borel sets A, A* c and any n ,  ~ ~ x ' ~ y  

(7) ~ ~ x ~ x * ~ , I ( z ~E A, Zi* E A*) 

where y has the continuity property that y(Am, Am*) -+ 0 for any sequence of 
Borel sets { A , ,  A,,*) for which F(A,) A F(A,*) -+ 0. In particular, 

The proof of Theorem 2 will be given in Section 4. The strength of this 
result is its generality. Note that the distributions are not even required to 
have densities for the result to be valid. 

Alternatively to Theorem 2, the following central limit theorem can also be 
used to establish Theorem 1.While Theorem 1does not give the precise asymp- 
totic distribution of A(XK(A,,), d7),this central limit theorem offers some in- 
sight into how to go about that. 
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TI-IEOREM3.  Assume that  g is continuous on  (0 ig ioo) and for almost 
every x, f (x, y) is continuous i n  y on (0 < g < so). Also assume that EIX14i-"i 
oo for some F > 0. Then n'l"~,,  - EA,) converges i n  distribution to some 
random matrix W where for any S = 1 ,2 . .. and constants al,bl, . . . ,as,bs 
i n  Ktd., ~ f = ~aimsis distributed as  Normal (0, (7" with (7" K Lwi ;  the 
K~ are finite constants depending only on  d ,  while the wi  are determined by f 
and the a i ,  bi as  

where $(xl, x2) = (112) a;(xlxk +xzxi)bs. 

Note that the precise expressions of the constants K~ are delayed until Sec- 
tion 4 in (35)-(38) since they contribute little insight a t  this point. The proof 
of Theorem 3 is contained in Section 5. 

We end this section with the remark that both Theorems 2 and 3 are easily 
extended to cover the partial sums of a class of functions of (Xi, Yi), (Xi,, Y;,). 

3. The speed of convergence of the  e.d.r. space estimate. We need 
some lemmas f rst. 

LEMMA4. Let A, B he two symmetric matrices of  dimension p x p ,  each 
having k nonzero eigenualues. Assume that I/A-B(I5 6 for some 6where I /  . / I  
denotes the sup norm. Let ./" (respectively, .JIB) be the linear spaces spanned 
by the eigenvectors o f  A (respectively, B) that  correspond to Al(A), . . . ,Ah(A) 
[respectively, Al(B), . . .,hk(B)].Then 

PROOF. Let u l ,  . . . ,up and v l , . . . ,vp be two orthonormal bases of RpSor 
which ul, . . . ,u h  are the eigenvectors that correspond to Al(A), . . .,Ah(A)for 
A and vl, . . . ,vh the eigenvectors that correspond to Al(B), ... ,Ah(B)for B. 
First focus on SUP^^.^^, ( a-m,,k (a)1 .  Write 

Ul = [u,, . . . , % I ,  U2 = I ~ h + l , .- .,u,,] 

and 

V ,=[v1 , . . . , Val ,  V2=[vk+,, . . . ,v,].  
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Since 

we obtain 

= ( sup a -

1 p 
,v ~ v ; ) ~ )

at./*,lal=l 

where Ip is the identity matrix of dimension p. Using the fact that 

V1Vi +v,v; = I , ,  

we get 

sup la - n ( a )  = ( sup arV2V;a) 
112 

at./;\, lal=l at./*,lal=l 

By the fact that every unit vector in ,/* can be written as Ulx for some unit 
vector x E Ktk,we conclude that 

= (largest eigenvalue of U;V2V;U1)1'2 

Express A and B by the spectral decompositions 

k /z 

A = hi(A)uiu: and B = Ai(B)viv: 
i = l  i = l  

For 1 i 5 k and k + 15 j 5 p,  it is clear that 

Hence 

Consequently, for each nonzero eigenvalue v of U',V2V;Ul and a corresponding 
unit eigenvector w, 

In view of (8), we have shown that 

sup la - n,&(a)(Ik3126/I~h(~)I.
at./*,lal=l 

By symmetry, we also have 

sup Ib - n./*(b)l 5 k W i " ~ l ( h ~ ( B ) ( .  
bt.&. Ibl=l 
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LEMMA5. CJnd~rthe assumptions of T l ~ ~ o r e m  A as n  -t1, EA,  -+ oc;. 

PROOF.Assume for convenience that Y has a density g. I t  is clear that  the 
pdf of Y ,  is 

which is bounded by 

By Theorem A.l of Bickel and Breiman (1983), 

for any y r I R d y  and u E [O, I] where h is a constant depending only on d,. 
Hence for any y,, 

1 

P(exp(-(n - 2)G(S(Y;  Y  y . ) ) )  > u )  du -= /zr=O 

-< b / (n - 2) / ( l o g  u )  d u  = b / (n- 2).  
. u=o 

As a result, the pdf of Y ,  is bounded by a constant multiple C of that  of' Y .  
Hence 

(10) E [ J v ( Y , ) J ~ ]  < oc;.< C E [ J V ( Y ) ~ ~ ]  

Note that  we assumed the existence of a density for convenience and that  this 
argument will go through in general if we replace g ( y ) by G(dy) .Now 

It suffices to deal with the first term. By the Cauchy-Schwarx inequality, 

E[v(Y)v(Y)']I  I V ( Y ) ~ ~ ] E " " [ ~ ~ ( Y , )IE[v(Y)v(Y,)']- 5 - v(Y)1q1. 

Now write 

where 6 > 0, 
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and 

B,,i6)= E[IviY*)-~iy)I2~(1y ,-YI 5 611. 

It  is easy to show that An(6)+ 0 for each fixed 6 by (10) and the Cauchy-
Schwarx inequality and that 

lim sup B,(6) = 0 
a i o  n 

by (6). This completes the proof. 

PROOFOF THEOREM1. We focus on A(JfK(A,),6),the other one being sim-
ilar. By the triangle inequality, 

A(J~K(A, ) ,8)IA ( g f ~ ( h , ) ,g f ~ ( A , ) )+A(gfK(An),8). 

Our task is therefore to show that both terms on the right are Op(n-'I2).By 
.. - 1 p

the root-n rate of'convergence of X, and 2, ,we conclude that 

Clearly, A, and A,  both converge in probability to A and hence the conver-
gence of the eigenvalues follows. As a result, for any E r (0, h K ( A ) ) ,we have 

and the same can be said for A,. It follows simply [cf. Lemma 3.1 of'Bai, Miao 
and Radhakrishna (1991)l from (11)and (12) that 

where qiwas defined in the beginning of Section 2. Hence (12) and Lemma 4 
imply that 

It follows fi-om (2) that 

E(A,)V = o for all v E 8l.  

Conclude as in (3) using symmetry that 

The question is whether the left-hand side of'(13) can be a strict subset of 8. 
In view of (SIRc), this can happen only if 

for some eigenvector v corresponding to a nonzero eigenvalue of A. Note that 

E(A,,)v = AV +R,V, 
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where R, + 0 by Lemma 5. Hence the scenario in (14) cannot happen for 
large n. Consequently, we conclude that for all large n, 

and as a result, 

A(J&(A~),6 )= A(JY~,(A,),2K(E(An))). 

That the last quantity is 0 , ( n ~ ' / ~ )now follows straightforwardly from Theo-
rem 2. This concludes the proof. 

4. Der ivat ion  of variance.  This section contains the proof of Theorem 2. 
Throughout we will assume without loss of generality that the X, are already 
standardized to have mean 0 and variance equal to the identity matrix. Below 
let y denote a generic function with the continuity property described in the 
theorem but which may take various forms in different inequalities. In the end, 
the maximum of these y functions will be the one in (7). Also fbr convenience 
of notation, write 

S 

~ ( z I ,~ 2 ):= w(z1, ~ 2 ;A, A*) := a ~ x l x ~ b ,I(zl  r A, z2 E A*) 
s=1 

fbr z, = (xl, yl),  z2 = (x2,yx)r ~ ~ h + ~ ~ yand Bore1 sets A, A* of ~ ~ ~ + ~ y .Thus, 

n S 11 

C C aiXiX:,bsI((Xi, Yi) E A, (Xi*,Yi*) E A*) = C w(Zi, Zi,). 
i= l  s = l  i=l 

By symmetry, 

and so 

where 
(2)M I  (n) = n(n - ~ ) E [ w ~ ( z ~ , Z ~ ) I ( ~ *= Z)], 

(2)M2 (n) = n(n - I ) E [ W ~ ( Z ~ ,Z2)I(1* = 2,2* = I)], 

('1M, (n)  = n(n - l ) (n  - 2)E[w(Z1, Z2)w(Z2,Z3)I(1* = 2, 2* = 3)1, 
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M,(2)(n)  = n(n - l ) (n  - 2)E[o(Z1, Z3)o(Z2, Z1)I(l* = 3, 2* = I)], 

(2)M6 (n) = n(n - l ) (n  - 2)(n - 3)E[w(Z1, Z2)w(Z3, Z,)I(l* = 2, 3* = 4)]. 

It follows from Cauchy-Schwarz and the triangle inequalities that 

for some constant C < oc;. Below C will denote a generic constant whose value 
changes from line to line. By (15), the arguments that led to (10) and Holder's 
inequality, 

~ ( , 2 ) ( n )I + lX1,I4)I(Z1 E A, Zl* E A*)]C n E [ ( l ~ l l ~  

< cnE4/(4+") [1x1 14+c]px/(4-t~) - (Z, E A, Z1, E A*). 

Consequently, 

(16) 	 n 1  M?)(n) 5 y(A, A*). 

(2)and, since M2 (n) 5 M?)(n), 

(17) 	 nplMf)(n) 5 y(A, A*). 

Now consider Mf)(n). Again, by (151, 

M?)(n) 5 Cn(n - l ) (n  - 2) 


x ~ [ ( I x i l ~ 
+ IX3I2>(IX2l2+ IX3I2) 

x I ( I *  = 3, 2* = 3, Z1, Z, r A, Z3 E A*)] 

(18) 	 = Cn(n - l ) (n  - 2) 

x ( ~ [ l ~ ~ 1 ~ 1 ~ ~ 1 ~ 1 ( 1 *= 3, 2%= 3, Z1, Z2 E A, Z3 E A*)] 

+~ E [ ( x , ( ~ ( X ~ ( ~ I ( ~ *3, 2* = 3, Z1, 2, E A, Z3 E A*)]= 

+ E[(X3I4I(1*= 3, 2* = 3, Z1, Z2 E A, Z3 E A*)]). 

First consider the leading term on the right of (18). By the Cauchy-Schwarz 
inequality and symmetry, 

EII X ~ ~ ~ ~ X , I " ( ~ *3, 2* = 3, Z1, Z2 E A, Z3 E A*)]= 

-< E [ ~ x , ( ~ I ( ~ *3, 2% 3, Z1 r A, Z3 E A*)]= = 
(19) 

<-	 = 3, 2%=~ ~ / ( ~ + ' ) [ l ~ ~ 1 ~ + ~ 1 ( 1 *3, Z1 E A)] 

pr/(4+4(l*= 3, 2* = 3 ,  z3 A*). 
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The two terms in the product on the right-hand side are bounded slightly 
differently, depending on the order in which the variables are to be averaged. 
By the inequalities 

(20) 	 1- x 5 e-", x > 0 and P(A U B) > (1/2)(P(A) + P(B)), 

EIIXl I4+"I(lx = 3 ,  2x = 3,  Z1 E A)] 

By (9) and the derivations that  immediately follow, 

Consequently, 


E [ I x ~ ~ ~ + " I ( ~ *3,  2x = 3, Z1 E A)]
= 

Clearly, 

Thus, 

(21) EIJXl 14+'~(lx = 3, 2x = 3 ,  Z1 E A)] I 14+"1(z1E A)].( 4 h / n 2 ) ~ [ 1 ~ ,  
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By (9) and (201, 

P(1* = 3,  2* = 3,  Z3 E A*)  

The first term on the right of (18)is taken care of by (19), (21)and (22).It is 
clear that the other two terms on the right of (18)can be dealt with similarly, 
giving 

(23)  n 1  M r ) ( n )  5 y ( A ,  A*). 

Next we consider M?)(n)  and M F ) ( n ) ,which are the same, and we use the 
notation of the former. By (lli), 

~ r ) ( n )5 C n ( n- l ) ( n- 1%~ ) E [ ( I X I  + (X3I2) 
x I(1* = 2,  2* = 3 ,  Z1 E A ,  Z2 E A nA*, Z, E A*)] .  

Repeated applications of the techniques used in the previous step give 

(24)  n ' ( ~ y ' ( n )+ M F ) ( n ) )5 y ( A ,  A*). 


Finally we consider the interplay between M r ) ( n ) and E 2 [ ~ y = l 
w(Z i ,  Z i*)] ,  
which is the most crucial part of the computation of the variance. Define 

Then 

M ,( 2 )( n )= n ( n - l ) ( n- 2 ) ( n- 3 )  



- - 

On the other hand, 

Hence 

while the integral in (25) has an exponential rate, say epCny(A, A*) for some 
c > 0 and some y ,  when restricted to the set G(S(yl;  lyl y2/ ) )+G(s(~,; ly,, 
~41) )> 1 . Hence, 

-< e-"ny(A, A*) + n2(n - 1)" 

Since we also have 
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upon applying the Cauchy-Schwarz inequality and symmetry, 

~ f ' ( n )  w ( Z 8 ,z~+))-~ ~ ( 2
(26) 	 r = l  

-< eP'"y(A, A*) + n2(n -- 1j2[A,,,1 + (A,, 2 -B,)I, 

where 

A,,,, = / t2(y1> Y ~ ) I ( Y ~  I Y IS ( ~ l ;  ~ 2 0 )  
C;'?-4 

( ~ ( Y I ;  ~ 2 1 )u S(YS:1 ~ 3  ~41))~ Y I-	 -

x dG(Y1) dG(Y2) dG(Y3) dG(Y4)> 

A,, 2 = j" t2(yl .  Y ~ ) I ( Y ~  S(YI;IYL-Y ~ O )  

x lyl - y21)u S(YS;1 ~ 3- ~ ~ 1 ) )  

x dG(Y1) dG(Y2) dG(Y3) dG(Y4) 

and 

B ,  = Y~)I(G(S(YI;  -~ 2 0 )+ G(S(Y3; I Y ~ - < 1)1	~ ' ( Y I ,  I Y I  ~41))  

x (1- G ( ~ ( Y I ;  - - I Y ~ -~ 4 1 ) ) ) ~ ~ ~I Y I  ~21))  G ( s ( ~ 3 ;  

x dG(Y1) dG(Y") dG(Y3) dG(Y4). 

Using (9) and (20) as  before, we obtain 

A , 1 5 1 S Y Y ~~ 2 ) ' ( ~ 4  - ~'21))> E ' (~1; I Y I  
' y ~ , Y z , Y a  

n - 4  
x e x - T G ( S ( ~ l :  lY1 -Y2l))) 

n - 4  
x (L? e x P ( - T ~ ( ~ ( Y 3 :  IY? -Y41))) d ~ ( Y 3 ) )  
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where 

vl(y, B) = E I I X ~ ~ I ( Z  yl ,  = P(Z  BIY = Y).E B)JY= 772(~,B )  

For any e > 0 , by the Cauchy-Schwarz inequality 

Clearly, 

= iI~ " ( Y I .  A)[/' N =O ZL e x p ( - G u )  de]  dG(yl)  

= 0(np2)  E [ ~ ~ ' " ( Y ,  A)]. 

Similarly, for any p ,  y > 0, p + y = 1, 

p(l+.)/.
= O ( n2 ) ~ 1 i p [ - / 1 2  (Y, A*)]. 
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This together with the previous estimate give a bound of the first term in (27). 
The second term there is bounded by the same principle. Hence we obtain 

Next, straightforward computations show that 

(29) Bn = --

Next note that 

--L/t2(y l ,  y2)Gn ' (s(yl ;  IYI  - ~ G ( Y ~ ) .y20)  ~ G ( Y ~ )  
n - 3 Y l , Y ,  

Now by (29), (30) and the techniques leading to (28), 

(31) n3(An,2- B,,) iY(A, A*). 

By (26), (28) and (31), we obtain 

Hence (7) follows from (16), (17)) (23)) (24) and (32). This concludes the proof 
of Theorem 2. EI 
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5. Central limit theorem. The rest of this paper is devoted to prov- 
ing Theorem 3.  This section gives the outline of the proof and the remaining 
sections contain the various technical details. The complete proof is rather 
lengthy and is best broken into a number of components as is done below. To 
facilitate the proof it is crucial to have a set of clear and flexible notation. First 
it is obvious that we can assume without loss of generality that X is already 
standardized. Thus, Z, = (Xi, (X, Y) and F and G are the probability Y,), Z = 
measures corresponding to Z and Y, respectively. Let z, = (x i ,  y,),  1 5 i im, 
be vectors where x i  and y i  are of dimensions d ,  and d,, respectively, and the 
distances lyi - y , I ,  1 5 i # j 5 m, are all distinct. From now on, fix a set 
of constants a l ,b l , . ..,as, bs in R". For measurable sets A,  A* c ILR"X+"Y, 

define 

112 S 

X ( A ,  A*; {zi ,  1. i i im}) = C C ab(xixi*+ xi ix~)bsI(z iE A, z,, E A*), 
i = l  s=l 

where i* is the index for which y,, is the nearest neighbor of y, ,  that is, for 
which 

Also define 

so that we can write 

As the notation will become rather complicated, let us make a minor simplifi- 
cation by assuming that the density f of Z is bounded. It will be clear that if 
this is not the case, we can do a truncation by attaching an indicator to every 
relevant expectation and then the proof will go through in more or less the 
same way as for the case where f is bounded. Since 

it follows that for each 6 > 0 there exists some C: t ( 0 , l )  such that 

Since {y: C: < g(y)  < cpl}  is open, it can be written as a countable union of 
bounded open rectangles, sets of the form (e l , f , )  x . . . x (edy, fdy) for finite 
e, , f ,. Then for any 6 > 0 it can be selected from these a finite set of bounded 
open rectangles whose union we denote by C such that 
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As a consequence, for every 6 3 0 there exists a set C which is the union of a 
finite number of bounded rectangles in R ~ Ysuch that 

G(C) < 612 and 0 < inf g(y) isup g(y) < oo. 
yrC y t C  

Now take a bounded Bore1 set B t Rdx so that P(X @ B) < 612 and write 
A = B x C. Clearly, 

(33) F(A)  = P(Z @ B x C) 5 P(X $ B) + P(Y 6C) < 6. 

Write 

By Theorem 2 and (33) ,the variance of 

can be made as small as desired by choosing a small enough 6. Thus, the 
central limit theorem follows if we show 

(34) np112 (.X(A, A; .A)- E X ( A ,  A; .8,)) +,Normal (0, a'), 

where 

and where. with 

~ ( Y I ,  r l )  U S(y2; r2), Rdy, r l ,  r2> 0,Y2; r l ,  r2) := ~ ( Y I ;  YI,Y2 t 

llsll:=./$~, S C ~ d y  

and 51, as defined in Theorem 3, the K ,  and w ,(A) are given by 



and 

wl(A)= 1	1/J2(.1> xZ)f(xllY)f(x21~) 

x I(x1, x2 t B, y t C)g(y) dxl dx2 dy, 

Here the w,(A)are truncated versions of the w, in Theorem 3.Also note that 
in the K,, the purpose for the particular subscripts for the dummy variables 
F'S is to keep track of how the various K, arise in the proof 

The proof of (34) goes as follows. One of the novelties here is a coupling 
argument which simplifies the proof For each n > 1, let P, be a Poisson 
random variable with mean n and independent of all the Z,. Define 

Thus, :eLis a Poisson process with intensity measure n /: f (z) dz. Also let 
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Define 

(T? = K ] W ~ ( A )  + ( K 3  - 1)w3(A) ,+ K ~ w ~ ( A )
(39) 

2(3= w 3 ( A )and tr; = wq(A) .  

Note that 

Write 

( A ,A;) - ( AA ) r(P,,) - r ( n )+ 
f i  f i  

The first term on the right-hand side of (40)converges in distribution to Nor- 
mal (0, 0-12 + a:) by Proposition 6. The second term on the right converges to 0 
in probability by Proposition 9 and the fact that P,, -n The third = 0,](1-~'/~). 
term on the right converges to 0 by a straightforward computation (cf. Lemma 
8).Note that the 1.h.s. of (40)is the sum of two independent random variables 
by the definition of P,. Since Proposition 10 shows that [ r ( P , )  r ( n ) ] / f i-

converges in distribution to Normal (0 ,  a:), the proof of (34)follows. 

6. Blocking. The main purpose of this section is to prove a central limit 
theorem for the first term on the right of (40).Therefore we continue to work 
in that setting and use the notation defined there. 

PROPOSITION6. Suppose that A = B x C E IW"'"Y where B is a hounded 
Borel set in  R" and C E I X d y  is a finite union of hounded rectangles. Assume 
that f and g satisfy the assumptions of Theorem 3 and also 0 < infytc g ( y )  5 
supyccg ( y )  < oo and sup,,^ f (z) < oo.Then 

(41) n 2 ( (A;Y )  E X ( A , A;*04,)) -,L Normal ( 0 ,a12 + a:)-

where a? and a: are given by (39). 

PROOF.A blocking method is created for the purpose of proving (41)and 
is described as follows. For each n ,  partition C into disjoint equal-sized cubes 
C1,. . . , C,. A cube is a rectangle of the form ( e l ,  el + 8 )  x . . . x (edy ,  eCly + 6) 
for some 6 > 0 and e l , . . . , e

(1, 
E R.Call these C, "blocks." Such a partition is 

possible if we choose the rectangles that form C in such a way that the ratio 
of the lengths of any pair of sides is a rational number. This can clearly be 
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Fru. 1. 72oo adjacent hloclzs f i r  d y  = 2 

done without sacrificing generality. Within each Ci, place a "big" cube ei in 
the center and fill the remaining space with I layers of equal-sized "small" 
cubes where d:l2 < I 5 d:/2 +1.Assume that the sizes of the big (small) cubes 
in all the Ci are the same. This way, every pair of big cubes ci and c , ~are 
buffered by at least 21 layers of small cubes. Figure 1illustrates two adjacent 
blocks in dimension 2 with I = 2. Denote by Ci, . . ,Ci:, the small cubes 

that touch ci(i.e., the first layer of small cubes outside of Ci).The motivation 
for this scheme of blocking is the following. Clearly, if y t c,, it follows from 
the choice of I that 

inf(1y - y'l: y' 6C,) - min sup(ly - y'l: y' E c , ,~,)  
(42) 1 - k - g  

> (I - d:l2) x length of the side of a small cube > 0 

Suppose that Y, t C, and there is at  least a Y,, in each of the c,, k ,  then (42) 
shows that the nearest neighbor of Y, must be in C,. We will make use of this 
shortly. First, control the sizes of the big and small cubes by choosing 

dy - npB' where 112 < P < P' < 1. 
1 . 1  

It is then easily verified that the small cubes are asymptotically negligible 
and in fact 

Note that we suppressed n at  various places to streamline notation and fur- 
thermore write 

Since the big and small cubes are all disjoint, 
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By (43), (44) and the fact that  the Xi are finitely truncated, it is easy to check 
that  

P 

-n-'12,&( U(Ci  ci);@,) + O uniformly almost surely 

i=l 

and hence 

So (41) will follow if we prove 

(45) n 1 2 ( & ( l  6,;) - E d ( ( )  6,;9,))-,, Normal (0 , cr: + 4). 
r = l  

Let 

,%,(E) = { ( X ,Y )t ,%,: Y t E )  and N , ( E )  = #(@,(E) ) ,E c I R d y  

Define the following events: 

where i,,tends to 0 slowly enough so that  

(46) 	 P [ ( E ) ~ ) ) "and PI(E:")'] tend to 0 exponentially as n -+ oc; 

uniformly in i 

and hence 

This is possible by (43), (44) and the assumption infyEc g(y)> 0. 
Consider the characteristic function 

Write 

4,(t>= 4,, l ( t )+ 4,,,2(t) ,  

where 

g,,,, ( t )  = E [I,,. , , ; l , , , , ~ ~ ,  exp 
r-1 
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By (47), 4,,,,(t) -t 0 and we only have to deal with cl),,, , (t).  Take any i = 

1,. . . ,p. If E:') holds, then by (42) and the explanation there, ./(el;e,)is 
completely determined by the set .Yn(CL),namely those points in :'4, whose 
y-coordinates are in C,. As a result, 

and as a consequence, 

( 2 )  tYn(C,))- 14rz,1(t)= ) exp ( i t n p 1 / 2 [ f / ( ~ , ;  E , / ( e , ;  el)])E ( I ~ , ~ ~ ( ~ ~ ' ~ ~ ~  

Now write 

4,,.l ( t )= E(lnil  (exp [itnpl/" ,I) (nP IEll) e x ~ ( z t n ~ " " ~ ,  vV,, 1) 
c=l 1=1 

where 

uIz,= pn(c1))~ l , / ( e ~ ;  N n ( c l ) l >?/(el;  - ~ % z ( c L ) ) l  

Vn,  = ~ [ * l ( e ~ ;  -~ [ f / ( e ~ ;f%z(cL))lNn(cL)l eL(cz))]> 
W,,,,= E[./(c , ; @,(C,))]- E [ . / ( e , ; ,%)I. 

By (46), W,, , -+ 0 exponentially fast and so we focus on the remaining 
terms. Clearly the random quantities I r ; )  e ~ ~ ( i t n ~ ' / ~ U , , ,  ,), 1 5 i 5 p,  are con- 

ditionally independent given the N,,(C,)and In,] Ei21 exP(itn-'/' ~ ~ = ,V , ,,) is 
, - I  

measurable with respect to N,,(C,), 15 i 5 p. Consequently, we have 

( 2 )Similar to the derivation of (47),it can be shown that on the event nt'_,Ei , 

P 


lim xP[(E~~) ) ' . IN , , ( c , ) ]0 uniformly.= n i m  
r = l  

Hence, to obtain the limit of nr=ly,, , ( t ) ,we can focus on 

which is the characteristic function of the sum of p independent random vari- 
ables. On the event E:", these random variables have zero means and the 
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sum of the variances converges to a constant (r; uniformly by Lemma 7 .  Since 
we have restricted the Xito be in a bounded set B and npll% n x xcl dy  + 0 

(2)by (44), it is easy to see that on the event n:=l Ei  , np1 /2~ , , , itends to 0 
uniformly in i and w .  Then it follows from the elementary inequality, 

EeitX- (itX)llz (itX)"3 l X E x 2  for any bounded rv. X/ ~ o E ~ 1 5 1 E6 

that 

P P 
lim n~ ( e x ~ ( i t n ~ ' / ~ ~ , , ,i)lNn(ci))= exp(-g?t2/2) uniformly on nEj2).
n i o o  

r = l  i-1 

I t  then follows from (48) and (46) that 

P 

l(t) = exp(-(r?t"j2)E exp 

The same approach as before works as V,, ,, . .. ,V,, are independent (by 
the independent increment property of the Poisson process). It follows from 
Lemma 8 that the variance of c : ~ ~V,, converges to 4.In view of (461, it is 
an easy exercise to verify the Lindeberg condition for the V,, and hence (45) 
follows from these steps. 

We continue to use the notation defined in Proposition 6. Write 

and let Z i ,,, = (Xi,j ,  Y i ,j ) ,  j 11, be iid random variables with distribution 

p(zi ,  E ) = J fi(z) dz. 
ZE. 

Accordingly, define gi(y), Gi and f (xly). 

LEMMA7. Under the conditions of Proposition 6, 

(49) 
i = l  

P 
(2)as n + oo uniformly on the event E i  , 

i= l  

where is defined by (39). 
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PROOF.First fix 15 i 5 p and m 14 and let Y i ,,,,:be the nearest neighbor 
of Y i ,  for 1 5 j 5 m .  For convenience, in this proof and that of Lemma 8 we 
will write 

S 

l ( x l ,  x 2 )  = $ C ai(xlxk + x,x;)bsI(xl ,  x ,  E B). 
s=l 

Then, by symmetry, 

var(U,, i lN,(Ci) = m )  

= E [ ~ L ~ ( c , ;  E ~ [ . , ~ ( c ~ ;  1 5 J 5 m } ) ]{Zi ,,,, 1 5 j 5 m } ) ]  {Zi,j ,-

m m 

= C C E[I(Xi,  , ,x i ,  j+) l (x i ,h -Xi ,  j,Yi, h t ' , ) Ik2<)I(Yi, 
j=l h e 1  

- (mEIi(Xi ,1 ,  xi,1,) I (Yi ,1 E cj)])" 
(50) 

= ~ E [ L ~ ( x ~ ,  1 E c i ) ]1, Xi, l+)I(Y, ,  

+ m ( m  ' ) E [ l ( X i ,1, Xi, l*)l(Xi,  2, Xi, 2$)I(Yj, 1, Y i ,  2, g ei)]-

- (mE[ l (X i ,  I(Yi,1 g ~ i ) ] ) ,  


=: M(;[ (m)+ M j"i(m)+ Mj2:(m)+ Mj"i(m) 


( 1 )+ ~ i Z i ( m )+ MjZ;(,n) - Mi ( m ) ,  

where 

~ i ' : ( m )= m ( m- l ) ( m  2)E[ l (X i ,1,xi,2)i(Xi,2 .  Xi, 3 )  

x I(1* = 2, 2* = 3,  Y , ,1 ,  Y i , ,  € t i ) ] ,  

~ j ' L ( m )= m ( m- ' ) ( m  2)E[i(Xi .  a)l(Xi,z,Xz,1 )  

x I(1* = 3 ,  2* = 1, Y ; ,  1, Y i , 2  E C i ) ] ,  

( 2 )
Mi, ,(m> = m ( m- l ) ( m  2) (m- 3)E[ l (Xi ,1, Xi, ~)I(xi,2 ,  Xi.4) 

x I(1* = 3, 2* = 4, Y i ,  1 ,Y i ,2  E C i ) ]  
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and 

M j l ) ( m )= (m(r7x- l ) E [ l ( X i ,,, X i .2 ) I ( l*  = 2, Yi ,  t c ; ) ] ) ~  
Clearly, 

x G y P 2 ( s ( y 1 ;Iyl-  y21)) dz1 dz2. 

Changing variables from ( y l ,  y2 )  to ( y l ,E )  where E = (mgi(Yl))11dy(y2- y l ) ,  
the above becomes 

( 2 )
M i , l ( m )= ( m  ~ ) [ L ~ ( X ~ > X Z ) I ( Y It c i ) f i ( ~ l l ~ l )  

Since g is bounded away from 0 and m on C = U; C i ,we have 

where 

( 2 )  ( 2 )Now replace m by N n ( C i ) in M i ,  l ( m )  and sum M i ,  l ( N , ( C i ) )  over i = 
1 , . . . , p. Taking account of the event nr=lE?), it follows from (51) and 
dominated convergence that 

P 

(52) M / ? ~ ( N , , ( c ~ ) )n w l ( A )  / e x p ( - l l ( ~ ( o ;  = n o l ( A )- 1~l)lI)de 
i=l 

as n i m uniformly on nEzlEi2).Similarly, uniformly on orllE?), we have, 
as n + oo, 
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and 

Now let's consider the most crucial term, Mi ,(2)
6. Observe that 

where 

x I (  Yl  -Y3 < Y1 -Y2 A Y1 -Y4 , 
IY2 -Y" < lY2 -Yll A IY2 - Y.1, 

(YI- ~ 2 15 \YI  - ~ 3 1+ 1 ~ 2- ~ 4 l ) f~ ( ~ i ) f 1 ( ~ 2 ) f ' 1 ( ~ 3 ) f ' 1 ( ~ 4 )  

x G : ~ - ~ ( S ( Y ~ ;  Y ~ I ) U S ( Y ~ ;Y ~ - ~ 4 1 ) )dzi d z 2  d z 3  d z 4  J y l  I 
and 
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As before, i t  is straightforward to show tha t  

(2) (1)So i t  remains to show how M j,6,2(m) interacts with M i  (m). Write 

~ ! " , 2 ( m )  = m4/ i(x1, x,)d(x,, x4)I(Y1. Y2 E e l )  
x ex~[-mG,(S(Yi;lYi - ~ 3 0 )-mG,(S(Y2; lY2 Y ~ O ) ]-

x f ' r ( z l ) f ' r ( z 2 ) f . i ( ~ 3 ) f . r ( ~ 4 )dz1 dz2 dz3 dz4 + R12)(m)> 

where 

R,(2) (m) = m(m - l ) (m  - 2)(m - 3) 

(l- G ~ ( S ( ~ l ;  - - G7(S(~2;~2 - ~ 4 ) ) ) " ' ~ ~1 ~ 1  ~ 3 1 ) )  

x f r ( ~ l > f z ( ~ 2 ) f r ( ~ 3 ) f z ( ~ 4 ) d ~ 1 d ~ 2 d ~ 3 d z 4  

-m4/ ( ( ~ 1 ,  x2)<(x3, x4)1(~1, y2 ' I )  

x exp[-mG,(S(y,; IYl - ~ 3 1 ) )-mGr(S(y2; IY2 -Y4I))l 

x f r ( ~ l ) f ' r ( ~ 2 ) f ' r ( ~ ~ ) f ' r ( ~ 4 ) d ~ 1 d ~ 2dz3dz4. 

Also write 
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where 

x exp[-mG,(S(y,; lYl -~31))- mGr(S(~'2;IY" -Y~I) ) ]  

x f',(zl>fI(z2)f,(z3)f,(~4)dzldz2 dz3 dz4. 

Hence 
M(2),,6, 2(m)- MI(1)(m) = R?)(m) - R;l)(m). 

Treating this with a similar approach to before yields 

P P 

(57) x 2 -x 1 n -no,(A). 
1=1 1-1 

The proof of (49) follows from (52)-(57). 

LEMMA8. [Jnder the conditions of'Proposition 6, 

P 

lim npl 1var(V,. ,) = rrz, 
n >% 

1-1 

where rri is defined by (39). 

PROOF.For convenience, denote N,(C,) by N,, , and use the notation in 
Proposition 6 and Lemma 7. Thus, 

x G: " 2 ( ~ ( y , ;/y2-~ ~ 1 ) )dzl  dza. 

Let N be a Poisson random variable with mean A and let 

4(s) = EsN = eA('-') , s > O .  

Then for any s > 0, 

E ( N ~ ( N- 1)2sNp2)= S ~ E ( N ( N- 1 ) ( N- 2)(N - 3)sNP4) 

+4sE(N(N - 2)(N - 2)sNp")+ 2 E ( N ( N  - l ) s N 2 )  

= S~</ , (~)(S)+ 4.~4(~)(.9)+ 2~/)(~)(.9) 

-- eA(' 1)(.~2A4+4 . 9 ~ ~+ 2A2) 

=: y(s ,  A). 
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Hence, 

E ( E ~ [ - M ( ~ ~ ;yn)lNn,ll) 


= J ((XI, ~ 2 ) ( ( ~ 3 .  ys t
x ~ ) I ( Y ~ ,  d7)f7(~i)fl(~z)f7(~i)fl(zn) 

X E[N:, ,(N,, - 1)2(G7(S(~1;  Yil))G1(S(Ys; IYs -Y ~ O ) ) ~ J " - ~ ]1 ~ 2-

x dzl  dz, dz3 dz4 

= ( ( ~ 1 ,  XI )~(X?> Y3 t ~ 1 ) f  ,(z,)f,(z3)fx4)1(~1> I ( ~ 1 ) f  


x y(G,(s(yl; IY:! I Y ~ -Y~I)) , 
-YIO)G,(S(Y~; nG(Cl))dzi dz2 dz3 dz4. 

Now, 

+ nG(Ci)Gi(s(Yl; I Y ~ -YII))G~(S(Y~;Y ~I ~ 4 1 ) ) )  

+4(nG(Ci))3 ex~( -nG(Ci ) [Gi (S(~ l ;  I Y ~- ~ 1 0 )  

+ Gi(S(Y3; 1 ~ 3-Y~O)]) 

+ smaller order terms. 

Similarly, 

E ( N ( N  - l ) s N - 9  = h2cA(s-1):= 6(s, A) 

and hence 

E2(E[ '~ (c7 ;  '%)I Nn, 11) 

= [ax1>x21ax3> ~ 4 ) I ( y l >  ~ 1 ) f  I (~3) f  l('4) Y3 Cz I ( ~ l ) f 7 ( ~ 2 ) f  
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where 

8(G1(S(Y1;1 ~ 2  I Y J  - n G ( C L ) )- Yi l ) ) ,  ~ G ( c , ) ) ~ ( G , ( s ( Y J ;  Y ~ I ) ) ,  

= (nG(C1))4ex~(-nG(C7)[G7(S(~1;- Y I1 ) )  + G , ( S ( Y J ;  - ~ 4 1 ) ) l ) .1 ~ 2  1 ~ 3  

Note that this cancels the first term in (58). By an  approach similar to that 
in the proof of Lemma 7, it is now easy to show from (58) that 

7. Other technical details. 

9.PROPOSITIONUnder the conditions of Proposition 6, there exists some 
finite constant M such that for all m ,  n ,  

v a r ( ~ ( A ,A ;.Yn - X ( A ,  A;  .&)) 5 M m .  

PROOF.For i = 1,. . . ,m +n,  let i* be the index for which Y,, is the nearest 
neighbor of Y , in .Yni ,and for 1 5 i 5 n ,  let ic*>be the index for which Y,,, is 
the nearest neighbor of Y , in ,Yn.Write 

where, with I/ /  defined in Theorem 3, 

n+m 


' 1  = x Xi2:)I(Zi>
+(Xi> Zi* E A ) ,  
i=ni 1 

n xI@(Xi, Xi,:)I(Zi, Zi* - Xi ,~>, ) I ( z i , E A ) ]R2 = A )  l /~(Xi ,  zi(*)
i=l 

The first of these can be handled in a way that is very similar to what is in 
the proof of Theorem 2 or Lemma 7 to give 

var (R l )5 M m .  
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Now write 

and hence by symmetry, 

First, 

mED: = ED:1(1* # 1.3) 5 M n  P(1* # 1 ~ )= Mn-
n - 1 '  

Next, 

n ( n  - 1)ED,D2 = n ( n  - 1)ED,D21(1* # I(*),2* f 2*,) 

= n ( n  - 1)(ED,D21[(1*# l o ,  2* # 2m)n F ]  

+ EDlD21[(1*# I(*),2* # 2(*))n F " ] ) ,  

where 

Keep in mind that the Di are bounded. Hence, taking an event in FC,say 
( l o  = 2) ,  the contribution of it to n ( n  - l ) E D ,D2 is 

The contribution of other events in F" to n ( n  - 1)ED1D2 can be dealt 
with using the same principle to give O(m) .  So it remains to consider 
n ( n  - 1)ED1D21[(1*# I(*),2* # 2 ~ )n F"] - n2E2D,. Clearly, 

whereas 

n 2 ~ ' D 1= ( n ( n- l ) m E D I I ( l *= n + 1, I(*)= 2))2 

As in the proof of Lemma 7, the two leading terms here cancel and the re-
mainders are of O(m) .This concludes the proof. 
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PROPOSITION 10. Under the conditions of Proposition 6, 

n - 1 1 2 ( ~ ( ~ , l )- +rl~ ( n ) )  Normal (0 ,ui) 
where is defined by (39). 

PROOF.The proof is based on an application of the "delta-method," as fol- 
lows. Clearly, 

~ ( m )m ( m  1)  / ' Q ( x I ,  x z ) l ( z i ,  z2 E A )= -

G m - - 2
(S(y1;I Y ,  - ~ 2 1 ) )dF(z1)  dF(z2) .  

Now define 

p(x) = ~ ( n x ) .  

Then 

By dominated convergence, 

By the "delta-method based on the fact that (Pi ,- n ) / f i -tCl Normal (0 ,  I ) ,  
we obtain 

Acknowledgments. I am grateful to the referee for pointing out the flaws 
in the previous version of this paper. I also wish to thank Zhidong Bai for 
helping me with the proof of Lemma 4 and Sungchul Lee for making me 
aware of the relevant results in geometric probability. Special thanks also 
go to Ray Carroll who motivated me to write this paper and helped me see 
through things in more ways than one. 



NEAREST NEIGHBOR INVERSE REGRESSION 

REFERENCES 

ALDOUS,D. and STEELE, M. (1992). Asymptotics for Euclidean minimal spanning trees on random 
graphs. Prohah. Theory Related Fields 92 247-258. 

AVRAM,F. and BERTSIMAS, D. (1993). On central limit theorems in geometrical probability. Ann. 
Appl. Prohah. 3 1033-1046. 

BAI,Z. D., MIAO, B. Q. and RADIIAKRISHNA, R. (1991). Estimation of directions of arrival of signals: 
asymptotic results. In Advances in  Spectral Analysis and Array Processing (S. Haykin, 
ed.) 2 327-347. Prentice-Hall, Englewood Cliffs, NJ. 

BICKEJ,,P. J. and BREIMAN, L. (1983). Sums of functions of nearest neighbor distances, moment 
bounds, limit theorems and a goodness of fit test. Ann. Prohah. 11 185-214. 

BREIMAN,L., FRIEDMAN, J. H., OJ,SREN, R. and STONE, C. (1984). Classification of 12egression 
Trees. Wadsworth, Belmont, CA. 

CHEN, H. (1991). Estimation of a projection-pursuit type regression model. Ann. Statist. 19 142-
157. 

COOK, R. D. (1995). Graphics for studying net effects of regression predictors. Statist. Sinica 5 
689-708. 

COOK, R. D. (1998). Principal Hessian directions revisited. *IAmer. Statist. Assoc. 93 84-100. 
FRIEDMAN, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc J. H. and STUETZLE, 

76 817-823. 
HALI,,P. (1989). On projection pursuit regression. Ann. Statist. 17 573-588. 
HALL, P. and LI, K. C. (1993). On almost linearity of low-dimensional projections from high- 

dimensional data. Ann. Statist. 21 867-889. 
HARDLE,W. and STOKER, T. M. (1989). Investigation smooth multiple regression by the method 

of average derivatives. J, Amer. Statist. Assoc 84 986-995. 
HASTIE, T. and TIBSHIRANI, R. (1986). Generalized additive models. Statist. Sci. 1 297-318. 
HURER,P. (1985). Projection pursuit (with discussion). Ann. Statist. 13 435-526. 
LI, K. C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer. 

Statist. Assoc. 86 316-342. 
LI, K. C. (1992). On principal Hessian directions for data visualization and dimension reduction: 


another application of Stein's lemma. J Amer. Statist. Assoc. 87 1025-1039. 

LI, K. C., AIZAGON, C. (1994). Analysis of multivariate outcome data: SIR 
Y. and THOMAS-AGNAN, 

and a non-linear theory of Hotelling's most predictable variates. Preprint. 
SAMOROV,A. M. (1993). Exploring regression structure using nonparametric functional estima- 

tion. J. Amer. Statist. Assoc. 88 836-847. 

DEPARTMENT OF STA~~ISTICS 
AND APPLIED PROBABILITY 

NATIONAL OF SINGAPOREUNIVERSITY 
LOWERKENT RIDGE ROAD 
SINGAPORE119260 


